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“The analysis of a more realistic poker 
game than our very simple model 
should be quite an interesting affair.”
-John Forbes Nash, 1951

“And that’s why there’s never going to 
be a computer that will play World Class 
Poker. It’s a people game.”
-Doyle Brunson, Super/System 1979
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Imperfect-Information Games

Perfect-Information 
Games



No-Limit Texas Hold’em Poker 

• Long-standing challenge problem in AI and game theory

• Massive in size (two-player has 10!"! decision points)

• By far the most popular form of poker



2017 Brains vs AI
• Libratus (our 2017 AI) against four of the best heads-up no-limit Texas 

Hold’em poker pros

• 120,000 hands over 20 days in January 2017
• $200,000 divided among the pros based on performance
• Won with 99.98% statistical significance
• Trained purely from self play; no human data
• Training: 3 million core hours (~$100,000); Running: 1,200 CPU cores



2019 Pluribus Experiment
• Pluribus (our 2019 AI) against 15 top professionals in      

six-player no-limit Texas Hold’em

• 10,000 hands over 12 days in June 2019
– Used variance-reduction techniques to decrease luck
– One bot playing with five humans

• Won with >95% statistical significance
• Cost under $150 to train, runs on 28 CPU cores (no GPUs)



Talk Outline

• Background
• Improving Counterfactual Regret Minimization (CFR)
– Discounted CFR
– Best-Response Pruning

• Scaling Equilibrium Finding to Large Games
– Deep CFR

• Search in Imperfect-Information Games
– Multi-Valued States
– ReBeL: Combining Deep Reinforcement Learning and Search

• Conclusion



Nash Equilibrium
Nash Equilibrium: a set of 
strategies in which no player can 
improve by deviating

In two-player zero-sum games, 
playing a Nash equilibrium 
ensures you will not lose in 
expectation

Exploitability: How much we’d 
lose to a best response

Critical assumption: Our strategy is common 
knowledge, but the outcomes of random 

processes are not common knowledge
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Nash Equilibrium
Nash Equilibrium: a set of 
strategies in which no player can 
improve by deviating

In two-player zero-sum games, 
playing a Nash equilibrium 
ensures you will not lose in 
expectation

Exploitability: How much we’d 
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Nash Equilibrium

“Poker is simple, as your 
opponents make mistakes, 
you profit.”
-Ryan Fee’s Poker Strategy Guide

Round 1 Round 2 Round 3

Us

Best 
Response

Our Exploitability = 0



Nash Equilibria in Non-Two-Player Zero-Sum Games
• Cannot be computed in polynomial time
• Even if it could be computed efficiently, might not make sense to play
• But same algorithms still work well in practice in six-player poker!



Improvements to
Counterfactual Regret Minimization



P1

Monte Carlo Counterfactual
Regret Minimization (MCCFR)
[Zinkevich et al. NeurIPS-07, Lanctot et al. NeurIPS-09]

Regret =
 0 Regret = 0

Pick action proportional to positive regret



P1

P2

Monte Carlo Counterfactual
Regret Minimization (MCCFR)
[Zinkevich et al. NeurIPS-07, Lanctot et al. NeurIPS-09]

Pick action proportional to positive regret

Regret =
 0 Regret = 0

Regret =
 0 Regret = 0



P1

P2

P1

Monte Carlo Counterfactual
Regret Minimization (MCCFR)
[Zinkevich et al. NeurIPS-07, Lanctot et al. NeurIPS-09]

Regret =
 0 Regret = 0

Regret =
 0 Regret = 0

Regret =
 0 Regret = 0



P1

P2

P1

Monte Carlo Counterfactual
Regret Minimization (MCCFR)
[Zinkevich et al. NeurIPS-07, Lanctot et al. NeurIPS-09]

Regret =
 0 Regret = 0

Regret =
 0 Regret = 0

Regret =
 0 Regret = 0



Monte Carlo Counterfactual
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Counterfactual Regret Minimization (CFR)
[Zinkevich et al. NeurIPS-07]
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Similar, but takes the EV over all actions
rather than sampling

Average converges to Nash in 𝑂 |"| |#|
$!

CFR+: small change that’s much faster
• After each iteration, if Regret < 0,

set Regret = 0
• When computing average strategy,

weigh iteration 𝑡 by 𝑡



Motivation: limitations of CFR+
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Motivation: limitations of CFR+

• On first iteration, pick all actions 
with equal probability

• Expected reward is -333,333
• Update regret as Action EV –

Achieved EV
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Motivation: limitations of CFR+

• On first iteration, pick all actions 
with equal probability

• Expected reward is -333,333
• Update regret as Action EV –

Achieved EV
• CFR+ floors regret at zero
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Regret = 333,334



Motivation: limitations of CFR+

• On second iteration, pick actions 
proportional to their regret
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Motivation: limitations of CFR+

• On second iteration, pick actions 
proportional to their regret

• Expected reward ≈ 0.5

P1

Reward = 0 Reward = 1 Reward = -1,000,000

𝑃 ≈
1
2

𝑃 = 0

𝑃 ≈
1
2

Regret =
 333,333

Regret = 0

Regret = 333,334



Motivation: limitations of CFR+

• On second iteration, pick actions 
proportional to their regret

• Expected reward ≈ 0.5
• Update regret

P1

Reward = 0 Reward = 1 Reward = -1,000,000

Regret =
 333,332.5

Regret = 0

Regret = 333,334.5



Motivation: limitations of CFR+

• Problem: It will take 471,407 iterations
for CFR+ to pick the middle action with
100% probability!

• Solution: Discount early “bad”
iters by weighing iteration 𝑡 by 𝑡
– Called Linear CFR

– After 𝑡 iters, first iter only counts for #
$(%$

– Picks middle action in only 970 iterations

– Convergence bound increases only by a factor of #&

P1

Reward = 0 Reward = 1 Reward = -1,000,000

Regret =
 333,332.5

Regret = 0

Regret = 333,334.5



Discounted CFR
• Linear CFR: Weigh iteration 𝑡 by 𝑡
• CFR+: Floor regrets at zero
• Can we combine both into Linear CFR+?
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• CFR+: Floor regrets at zero
• Can we combine both into Linear CFR+?
– Theory: Yes!   Practice: No! Does very poorly in practice



Discounted CFR
• Linear CFR: Weigh iteration 𝑡 by 𝑡
• CFR+: Floor regrets at zero
• Can we combine both into Linear CFR+?
– Theory: Yes!   Practice: No! Does very poorly in practice

• But less-aggressive combinations do well: Discounted CFR (DCFR)

– On each iteration, multiply positive regrets by !!

!!"#

– On each iteration, multiply negative regrets by !"

!""#
– 𝛼 = 1.5, 𝛽 = 0 consistently outperforms CFR+



Experimental results on heads-up no-limit Texas 
hold’em poker endgames used by Libratus



Experimental results on heads-up no-limit Texas 
hold’em poker endgames used by Libratus



Linear Monte Carlo CFR



Pruning in CFR

P1

P2

P1

Reward = $50 Hypothetical
Reward = $100

P1

Hypothetical
Reward = $100

Reward = -$500

Regret = 600

Regret =
 0

Regret = -550

Regret =
 0 Regret = 0

Regret =
 0

Regret = 50

Reward = $50

Regret = 0

Hypothetical
Reward = -$500

Q: Can we prune actions with extremely negative regret?
A: No, because regret might increase over time.

But regret can only increase so quickly, so we
can temporarily prune negative-regret actions



First Action EV in poker for 2ª7©
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First Action EV in poker for 2ª7©
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Theoretical Results for
Best Response Pruning (BRP)

• The asymptotic time and space complexity of 
solving a game with BRP is not dependent on the 
number of actions in the game, but on the 
number of actions that are part of a best 
response to an equilibrium

• This can be orders of magnitude smaller



Better Convergence with BRP

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000

Ex
pl

oi
ta

bi
lit

y

Nodes Touched x 10^7

Leduc-5 CFR

CFR+

CFR-RM+ w/ BRP



Using Less Memory with BRP



Scaling to Large Games with Deep CFR



Original game

Abstracted game

Bu
ck

et
ed

 to
ge

th
er

Prior Approach: Abstraction in Games

• Requires extensive domain knowledge
– Several papers written on how to do abstraction just in poker
– Difficult to extend to other games



Deep CFR
• Input: low-level features (visible cards, observed actions)
• Output: estimate of action regrets
• On each iteration:

1. Collect samples of action regrets, add to a buffer
2. Train a network to predict regrets
3. Use network’s regret estimates to play on next iteration

• Theorem: With arbitrarily high probability, Deep CFR 
converges to an 𝜖-Nash equilibrium in two-player zero-sum 
games, where 𝜖 is determined by prediction error



Exploitability in Flop Hold’em (1011 nodes)



Experimental results in limit Texas hold’em
• Deep CFR produces superhuman performance in heads-up limit 

Texas hold’em poker

• Deep CFR outperforms Neural Fictitious Self Play (NFSP), the prior 
best deep RL algorithm for imperfect-info games [Heinrich & Silver arXiv-15]

– Deep CFR is also much more sample efficient

• Deep CFR is competitive with domain-specific abstraction 
algorithms



Searching for a better strategy in real time

Image Credit: UC Berkeley CS-188 Lecture 6



Real-time search is important

No real-time search

Full AlphaGo Zero
Superhuman performance



Search in Perfect-Information Games

• In perfect-information games, the 
value of a state is the unique value 
resulting from backward induction

• A value network takes a state as 
input and outputs an estimate of 
the state value

𝑓$%&!'( ) = 1



Search in Perfect-Information Games

• Where does the value network 
come from?
– It can be a handcrafted heuristic 

function [early chess AI’s]

– It can be learned by training on expert 
human games [AlphaGo]

– It can be learned through self-play 
reinforcement learning [AlphaZero]

𝑓$%&!'( ) = 1



Search in Perfect-Information Games

• In principle, backward induction 
alone can solve Chess

• But this would be far too 
expensive in practice

Whole game is too 
large to solve



Search in Perfect-Information Games
• Instead, chess AI’s do search:

1. Look ~10 moves ahead
2. Estimate those state values using 

the value network
3. Do backward induction using 

those state values (ignore the 
game below those states)

• In other words, solve a subgame

• If the value network is perfect, 
this computes the optimal action

Solve with 
backward induction

SubgameLeaf node



Why is search in imperfect-information games hard?

Because “states” don’t have well-defined values



Depth-Limited Search
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Depth-Limited Search in Pluribus



Exploitability Measurements
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Search in Imperfect-Information Games
Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors

Scissors

𝑷𝟐

Ro
ck

Paper

0 -1 2

Scissors

𝑷𝟐

Ro
ck

Paper

Scissors

𝑷𝟐

Ro
ck

Paper

Paper𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

1 0 -2 -2 2 0

Depth-Limited Rock-Paper-Scissors+

𝑷𝟏

Rock Scissors
Paper

-1 0 2

𝑷 = 𝟎. 𝟖 𝑷 = 𝟎. 𝟏𝑷 = 𝟎. 𝟏

0 0 0

• Another solution: condition value on probability distribution over possible states
[Nayyar et al. IEEE-13, Moravcik et al. Science-17]
• 𝑣 𝑅𝑜𝑐𝑘 is not well-defined
• 𝑣 0.8 𝑅𝑜𝑐𝑘, 0.1 𝑃𝑎𝑝𝑒𝑟, 0.1 𝑆𝑐𝑖𝑠𝑠𝑜𝑟𝑠 = −0.6

• Idea originated in Dec-POMDP research, and later used in poker AIs including DeepStack
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Critical assumption: Our entire policy is common knowledge, but 
the outcomes of random processes are not common knowledge



Converting imperfect-information games
to continuous-state perfect-information games
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…
If I have a A I bet. ♠ K
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Referee

Discrete State Representation



Converting imperfect-information games
to continuous-state perfect-information games

I bet.

♠ K

K  ♠

♦ A

A ♦

If I have a 2 I bet.
If I have a 3 I fold.
…
If I have a A I bet. ♠ K

K  ♠

♦ A

A ♦

Player 1 bets.

Referee

Discrete State RepresentaKon



ConverHng imperfect-informaHon games
to conHnuous-state perfect-informaHon games

I bet.

♠ K

K  ♠

♦ A

A ♦

If I have a 2 I bet.
If I have a 3 I fold.
…
If I have a A I bet. ♠ K

K  ♠

♦ A

A ♦

Player 1 bets.

Referee

I don’t have a 3

Player 1 doesn’t 
have a 3

Discrete State RepresentaKon
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ConverHng imperfect-informaHon games
to conHnuous-state perfect-informaHon games

I bet with my 2.
I fold with my 3.
…
I bet with my A.

♠ 2

2   ♠

Referee
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…

…
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𝑃 𝑏𝑒𝑡 = 0.92 =
∑# 𝑃 𝑏𝑒𝑡 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)

𝑃 𝑓𝑜𝑙𝑑 = 0.08 =
∑# 𝑃 𝑓𝑜𝑙𝑑 𝑠 𝑤(𝑠)

∑#𝑤(𝑠)
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Public Belief State (PBS) RepresentaKon
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ReBeL
• Whenever an agent acts, generate a 

discrete subgame and solve it
– Solve using FicQQous Play or CFR
– Leaf values come from PBS value net
– Take next acQon

• Repeat un\l end of game

• Final value is used as a training 
example for all encountered PBSs Blue wins!



ReBeL
As with AlphaZero, ReBeL chooses a 
random ac\on with 𝜖 probability during 
training to ensure proper explora\on

Theorem: With tabular tracking of PBS 
values, ReBeL will converge to a #

(
-Nash 

equilibrium in finite \me, where 𝑇 is the 
number of CFR itera\ons

Blue wins!
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• Our soluQon: Stop FP / CFR on a random iteraQon and assume beliefs from that iteraQon
• Opponent will not know our beliefs, so cannot predict in what way our policy will be pure
• The subgame policy will be a Nash equilibrium in expectaKon
• Provably plays according to a Nash equilibrium when using a PBS value func_on



Results in Two-Player No-Limit Texas Hold’em

Slumbot Baby Tartanian8 Local Best Response Top Humans

DeepStack 383 ± 112
Libratus 63 ± 14 147 ± 39
Modicum 11 ± 5 6 ± 3
ReBeL 𝟒𝟓 ± 𝟓 𝟗 ± 𝟒 𝟖𝟖𝟏 ± 𝟗𝟒 𝟏𝟔𝟓 ± 𝟔𝟗



Results in Two-Player Liar’s Dice

1 die, 4 faces 1 die, 5 faces 1 die, 6 faces 2 dice, 3 faces

Tabular Full-Game FP 0.012 0.024 0.039 0.057
Tabular Full-Game CFR 0.001 0.001 0.002 0.002
ReBeL with FP 𝟎. 𝟎𝟒𝟏 𝟎. 𝟎𝟐𝟎 𝟎. 𝟎𝟒𝟎 𝟎. 𝟎𝟐𝟎
ReBeL with CFR 𝟎. 𝟎𝟏𝟕 𝟎. 𝟎𝟏𝟓 𝟎. 𝟎𝟐𝟒 𝟎. 𝟎𝟏𝟕

Source code available at github.com/facebookresearch/rebel



Other thesis topics not covered in this talk

• Improvements to CFR
– Other forms of pruning
– Warm star\ng CFR from arbitrary strategies

• AbstracPon Techniques
– Compu\ng locally op\mal discre\za\ons in con\nuous ac\on spaces
– Simultaneous abstrac\on and equilibrium finding

• Search
– Reach subgame solving and other safe search techniques



Recap

• Developed the state-of-the-art equilibrium-finding algorithm for 
adversarial imperfect-information games

• Developed the first non-tabular form of CFR to scale to large games

• Developed theoretically sound and scalable search techniques

• Together, these advances enabled an AI to defeat top humans in 
no-limit poker for the first time



What happens now?



2012



2012 2020

*



Scaling CFR to larger games

• Modern neural network CFR 
algorithms s\ll discre\ze 
ac\on spaces

• Remains to be seen whether 
CFR scales to 3D environments

• DREAM [Steinberger, Lerer, Brown arXiv-20] 

is a step in this direc\on



Lack of Common Knowledge

• All of the described search 
techniques rely on common 
knowledge

• What if there is none?



Beyond Two-Player Zero-Sum

• Life isn’t zero sum: AIs are 
still bad at cooperation, 
negotiation, and coalition 
formation

• Pluribus showed some of 
these techniques extend 
beyond two-player zero-sum, 
but there is more to do



Thank You!
Website: www.noambrown.com

Thesis: http://www.cs.cmu.edu/~noamb/NoamBrownThesis.pdf

http://www.noambrown.com/
http://www.cs.cmu.edu/~noamb/NoamBrownThesis.pdf

