Equilibrium Finding for Large Adversarial
Imperfect-Information Games

Noam Brown

“The analysis of a more realistic poker
game than our very simple model
should be quite an interesting affair.”
-John Forbes Nash, 1951

“And that’s why there’s never going to
be a computer that will play World Class
Poker. It’s a people game.”

-Doyle Brunson, Super/System 1979
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No-Limit Texas Hold’em Poker

* Long-standing challenge problem in Al and game theory
« Massive in size (two-player has 106! decision points)

e By far the most popular form of poker



2017 Brains vs Al

Libratus (our 2017 Al) against four of the best heads-up no-limit Texas
Hold’em poker pros

$200,000 divided among the pros based on performance

Won with 99.98% statistical significance

Trained purely from self play; no human data

Training: 3 million core hours (~$100,000); Running: 1,200 CPU cores



2019 Pluribus Experiment

* Pluribus (our 2019 Al) against 15 top professionals in
six-player no-limit Texas Hold’em

10,000 hands over 12 days in June 2019

— Used variance-reduction techniques to decrease luck
— One bot playing with five humans

* Won with >95% statistical significance
e Cost under $150 to train, runs on 28 CPU cores (no GPUs)
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Nash Equilibrium

“Poker is simple, as your
opponents make mistakes,
you profit.”

-Ryan Fee’s Poker Strategy Guide

Round 1

Round 2

Round 3
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Best
Response

Our Exploitability =0




Nash Equilibria in Non-Two-Player Zero-Sum Games

e Cannot be computed in polynomial time
* Even if it could be computed efficiently, might not make sense to play
e But same algorithms still work well in practice in six-player poker!
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Improvements to
Counterfactual Regret Minimization
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Counterfactual Regret Minimization (CFR)
[Zinkevich et al. NeurlPS-07]

Similar, but takes the EV over all actions
rather than sampling

Average converges to Nash in O (Lm) eward = -$500

CFR+: small change that’s much faster

» After each iteration, if Regret <0,
set Regret =0

* When computing average strategy,
weigh iteration t by t

Reward = -$500 Hypothetical
Reward = S100

Reward = S50 Hypothetical
Reward = S100
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Motivation: limitations of CFR+

* On second iteration, pick actions
proportional to their regret

* Expected reward = 0.5

 Update regret

Regret = 333,334.5
v

Reward =0 Reward =1 Reward =-1,000,000



Motivation: limitations of CFR+

* Problem: It will take 471,407 iterations
for CFR+ to pick the middle action with
100% probability!

&
Q@‘%

Regret = 333,334.5v
* Solution: Discount early “bad” Reward =0 Reward = 1 Reward = 1,000,000
iters by weighing iteration t by ¢t
— Called Linear CFR
— After t iters, first iter only counts for ——
— Picks middle action in only 970 iterations

: 2
— Convergence bound increases only by a factor ofﬁ



Discounted CFR

* Linear CFR: Weigh iteration t by t
 CFR+: Floor regrets at zero
 Can we combine both into Linear CFR+?



Discounted CFR

* Linear CFR: Weigh iteration t by t
 CFR+: Floor regrets at zero
 Can we combine both into Linear CFR+?

— Theory: Yes! Practice: No! Does very poorly in practice



Discounted CFR

Linear CFR: Weigh iteration t by t
CFR+: Floor regrets at zero
Can we combine both into Linear CFR+?

— Theory: Yes! Practice: No! Does very poorly in practice

But less-aggressive combinations do well: Discounted CFR (DCFR)

a

— On each iteration, multiply positive regrets by

th

— On each iteration, multiply negative regrets by —

—a = 1.5, f = 0 consistently outperforms CFR+

t*+1

+1



Experimental results on heads-up no-limit Texas
hold’em poker endgames used by Libratus
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Exploitability (mbb/g)
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Pruning in CFR

Q: Can we prune actions with extremely negative regret?
A: No, because regret might increase over time.

Hypothetical

But regret can only increase so quickly, so we Reward = 550 Reward = -$500

can temporarily prune negative-regret actions

Regret =0

Reward = -$500 Hypothetical
Reward = S100

Reward = S50 Hypothetical
Reward = S100



First Action EV in poker for 247w

—Fold EV
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Action EVs for 2a7v

First Action EV in poker for 247w

—Fold EV

Earliest that “Raise” could stop appearing
suboptimal from various starting points —Raise EV
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Theoretical Results for
Best Response Pruning (BRP)

 The asymptotic time and space complexity of
solving a game with BRP is not dependent on the
number of actions in the game, but on the
number of actions that are part of a best
response to an equilibrium

* This can be orders of magnitude smaller



Exploitability

Better Convergence with BRP
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Information Sets Stored

Using Less Memory with BRP

Information Sets Stored
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Scaling to Large Games with Deep CFR
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Prior Approach: Abstraction in Games

Original game

* Requires extensive domain knowledge

Bucketed together

A
o

A

v
VJ

RAR 4]

A
)

Ao

v
VJ

Abstracted game

— A

— Several papers written on how to do abstraction just in poker

— Difficult to extend to other games



Deep

CFR

Input: low-level features (visible cards, observed actions)

Output: estimate of action regrets

On each iteration:

1. Collect samples of action regrets, add to a buffer

2. Train a network to predict regrets

3. Use network’s regret estimate

s to play on next iteration

Theorem: With arbitrarily high probability, Deep CFR

converges to an e-Nash equili

orium in two-player zero-sum

games, where € is determinec

by prediction error



Exploitability in Flop Hold’em (10*! nodes)

Convergence of Deep CFR vs Domain-Specific Abstractions
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Experimental results in limit Texas hold’em

 Deep CFR produces superhuman performance in heads-up limit
Texas hold’em poker

 Deep CFR outperforms Neural Fictitious Self Play (NFSP), the prior
best deep RL algorithm for imperfect-info games

— Deep CFR is also much more sample efficient

 Deep CFR is competitive with domain-specific abstraction
algorithms



Searching for a better strategy in real time

Image Credit: UC Berkeley CS-188 Lecture 6



Real-time search is important

Full AlphaGo Zero
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Search in Perfect-Information Games

* |n perfect-information games, the

value of a state is the unique value W Bl
resulting from backward induction é-i- i
fwhite( 4
* A value network takes a state as i B
input and outputs an estimate of 4 é} 4

the state value R B e

Lo ~ w - o Ll N &



Search in Perfect-Information Games

e Where does the value network
come from?

— |t can be a handcrafted heuristic
function [early chess Al's]

fwhite(

— |t can be learned by training on expert
human games [AlphaGo]

— |t can be learned through self-play
reinforcement learning [Alphazero]



Search in Perfect-Information Games

* In principle, backward induction
alone can solve Chess

Whole game is too
large to solve

e But this would be far too
expensive in practice



Search in Perfect-Information Games

* |nstead, chess Al’s do search:

1. Look ~10 moves ahead

2. Estimate those state values using Leaf node
the value network

3. Do backward induction using
those state values (ignore the
game below those states)

Subgame

1 Y
y Y
#
Y
Y
Y
)
%
Y
A}
\!
Y
»

* |In other words, solve a subgame

* If the value network is perfect,
this computes the optimal action



Why is search in imperfect-information games hard?

Because “states” don’t have well-defined values



Depth-Limited Search

Rock-Paper-Scissors+
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Depth-Limited Search in Pluribus
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Search in Imperfect-Information Games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

* Another solution: condition value on probability distribution over possible states

* v(Rock) is not well-defined
* v([0.8 Rock,0.1 Paper, 0.1 Scissors]) = —0.6

* |dea originated in Dec-POMDP research, and later used in poker Als including DeepStack



Search in Imperfect-Information Games

Rock-Paper-Scissors+ Depth-Limited Rock-Paper-Scissors+

Critical assumption: Our entire policy is common knowledge, but
the outcomes of random processes are not common knowledge
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Converting imperfect-information games

to continuous-state perfect-information games

| bet.

| don’t have a 3

9

If | have a 2 | bet.
If | have a 3 | fold.

Player 1 doesn’t
have a 3
9

Referee

Player 1 bets. ]




Converting imperfect-information games
to continuous-state perfect-information games
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Converting imperfect-information games
to continuous-state perfect-information games

Update weights with Bayes’ Rule

| bet with my 2. )
| fold with my 3.

\ | bet withmy A. )

'

w(2) = %

SR
S» 2

!
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& 3
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SR
& A
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Referee  P(fold) = 0.08 = Ls P(gjif(lgw(s)
_ _ Xs P(bet|s)w(s)
P(bet) = 0.92 = RO

Player 1 bets. J
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Converting imperfect-information games

to continuous-state perfect-information games

| bet with my 2. )
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ReBel

Whenever an agent acts, generate a
discrete subgame and solve it

— Solve using Fictitious Play or CFR
— Leaf values come from PBS value net

— Take next action
Repeat until end of game

Final value is used as a training
example for all encountered PBSs

Blue wins!



ReBel

As with AlphaZero, ReBel chooses a
random action with € probability during
training to ensure proper exploration

Theorem: With tabular tracking of PBS

: 1
values, ReBel will converge to a —=-Nash

VT
equilibrium in finite time, where T is the

number of CFR iterations

Blue wins!
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Playing Nash at Test Time

Rock-Paper-Scissors+ Rock-Paper-Scissors+ Subgame

e QOur solution: Stop FP / CFR on a random iteration and assume beliefs from that iteration
* Opponent will not know our beliefs, so cannot predict in what way our policy will be pure
* The subgame policy will be a Nash equilibrium in expectation
* Provably plays according to a Nash equilibrium when using a PBS value function



Results in Two-Player No-Limit Texas Hold’em

DeepStack 383+ 112
Libratus 63 + 14 147 + 39
Modicum 11+5 6+ 3

ReBel 45+ 5 9+4 881 + 94 165 + 69



Results in Two-Player Liar’s Dice

_ 1 die, 4 faces 1 die, 5 faces 1 die, 6 faces 2 dice, 3 faces

Tabular Full-Game FP 0.012 0.024 0.039 0.057
Tabular Full-Game CFR 0.001 0.001 0.002 0.002
ReBel with FP 0.041 0.020 0.040 0.020
ReBel with CFR 0.017 0.015 0.024 0.017

Source code available at github.com/facebookresearch/rebel



Other thesis topics not covered in this talk

* Improvements to CFR
— Other forms of pruning

— Warm starting CFR from arbitrary strategies

e Abstraction Techniques
— Computing locally optimal discretizations in continuous action spaces
— Simultaneous abstraction and equilibrium finding

* Search

— Reach subgame solving and other safe search techniques



Recap

Developed the state-of-the-art equilibrium-finding algorithm for
adversarial imperfect-information games

Developed the first non-tabular form of CFR to scale to large games
Developed theoretically sound and scalable search techniques

Together, these advances enabled an Al to defeat top humans in
no-limit poker for the first time



What happens now?
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Scaling CFR to larger games

 Modern neural network CFR
algorithms still discretize
action spaces

e Remains to be seen whether
CFR scales to 3D environments

¢ DREAM [Steinberger, Lerer, Brown arXiv-20]
is a step in this direction




e All of the described search

e What if there is none?

[ 3

Lack of Common Knowledge

techniques rely on common
knowledge

RECONNAISSANCE
BLIND CHESS




Beyond Two-Player Zero-Sum

e Lifeisn’t zero sum: Als are
still bad at cooperation,
negotiation, and coalition
formation

* Pluribus showed some of
these techniques extend
beyond two-player zero-sum,
but there is more to do




Thank You!

Website: www.noambrown.com

Thesis: http://www.cs.cmu.edu/~noamb/NoamBrownThesis.pdf
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