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Despite much progress in training artificial intelligence (AI) systems to imitate human language,
building agents that use language to communicate intentionally with humans in interactive environments
remains a major challenge. We introduce Cicero, the first AI agent to achieve human-level performance
in Diplomacy, a strategy game involving both cooperation and competition that emphasizes natural
language negotiation and tactical coordination between seven players. Cicero integrates a language
model with planning and reinforcement learning algorithms by inferring players’ beliefs and intentions
from its conversations and generating dialogue in pursuit of its plans. Across 40 games of an anonymous
online Diplomacy league, Cicero achieved more than double the average score of the human players
and ranked in the top 10% of participants who played more than one game.

A
major long-term goal for the field of
artificial intelligence (AI) is to build
agents that can plan, coordinate, and
negotiate with humans in natural lan-
guage. Although much progress has

been made in language models that imitate
human language (1), effective negotiation
agents must go beyond this by understand-
ing the beliefs, goals, and intentions of their
partner; planning joint actions that account
for their partner’s goals; and persuasively and
intentionally communicating these proposals.
We present Cicero, an AI agent that achieved

human-level performance in the strategy game
Diplomacy. In Diplomacy, seven players con-
duct private natural language negotiations to
coordinate their actions to both cooperate and
compete with each other. By contrast, prior
major successes for multi-agent AI have been
in purely adversarial environments such as
chess (2), Go (3), and poker (4), in which com-
munication has no value. For these reasons,
Diplomacy has served as a challenging bench-
mark for multi-agent learning (5–8).

Cicero couples a controllable dialogue mod-
ule with a strategic reasoning engine. At each
point in the game, Ciceromodels how the other
players are likely to act on the basis of the game
state and their conversations. It then plans how
the players can coordinate to their mutual ben-
efit andmaps these plans into natural language
messages.
We entered Cicero anonymously in 40 games

of Diplomacy in an online league of human
players between 19August and 13October 2022.
Over the course of 72 hours of play that in-
volved sending 5277 messages, Cicero ranked
in the top 10%of participantswho playedmore
than one game.

Challenges of human-AI cooperation
in Diplomacy

Almost all priorAIbreakthroughs in gameshave
been in two-player zero-sum (2p0s) settings, in-
cluding chess (2), Go (3), heads-up poker (9, 10),
and StarCraft (11, 12). In finite 2p0s games,
certain reinforcement learning (RL) algorithms
that learn by playing against themselves—a
process known as self-play—will converge to
a policy that is unbeatable in expectation in
balanced games (13). In other words, any finite
2p0s game can be solved through self-play with
sufficient compute and model capacity.
However, in games that involve cooperation,

self-play without human data is no longer
guaranteed to find a policy that performs well
with humans, even with infinite compute and
model capacity, because the self-play agentmay
converge to a policy that is incompatible with
human norms and expectations. This effect
can be clearly seen in settings that involve

language, in which prior work found that
self-play produced uninterpretable language
despite achieving high task success for the
agents (14, 15). Even in dialogue-free versions
of Diplomacy, we found that a self-play algo-
rithm that achieved superhuman performance
in 2p0s versions of the game performed poorly
in games with multiple human players owing
to learning a policy inconsistentwith the norms
and expectations of potential human allies
(16, 17). Thus, a major challenge inDiplomacy
is to develop a way to harness the potential
benefits of self-play in a way that leads to
human-compatible language and behavior.
The challenge of maintaining human-

interpretable communication is particularly
acute in Diplomacy, in which our agent sent
and received an average of 292 messages per
game (fig. S8). Messages in the game often
involve coordinating precise plans, and any
miscommunication can result in their fail-
ure. Each message an agent sends must be
grounded in (be contextually appropriate and
consistent with) lengthy dialogue histories,
game states—including proposed hypothetical
states—and goals. If messages are inaccurately
grounded, humans may ask the agent to ex-
plain its errors (a challenging task that may
lead to further mistakes) or choose to coop-
erate with others instead. Further, repeated
messaging creates feedback loops, in which
the language model imitates the style of its
own previous messages—for example, send-
ing a short or incoherentmessagewill increase
the likelihood of such messages in the future
(18). Past work on strategic dialogue systems
has avoided these issues by focusing on sim-
pler settings (14, 19–21), which involve only
a single human partner, shorter dialogue his-
tories, and simpler strategies.
Last, Diplomacy is a particularly challeng-

ing domain because success requires building
trust with others in an environment that en-
courages players to not trust anyone. Each
turn’s actions occur simultaneously after non-
binding, private negotiations. To succeed, an
agent must account for the risk that players
may not stay true to their word, or that other
players may themselves doubt the honesty of
the agent. For this reason, an ability to reason
about the beliefs, goals, and intentions of others
and an ability to persuade and build relation-
ships through dialogue are powerful skills in
Diplomacy.

The game of Diplomacy

Diplomacy is a board game in which seven
players compete to control supply centers (SCs)
on a map, by moving their units into them. A
player wins by controlling a majority of SCs.
The game may also end when all remaining
players agree to a draw, or a turn limit is
reached, in which case scores are determined
by the number of SCs each player controls.
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Each turn, all players engage in private pair-
wise free-form dialoguewith the others during
anegotiationperiod, and then all players simul-
taneously choose an action comprising one
order per unit they control. A unit may sup-
port other units, including those of another
player, which forms the basis for much of the
negotiation in Diplomacy. A detailed descrip-
tion of the rules is provided in the supplemen-
tary materials (SM), materials and methods,
section C.

Overview of Cicero

At a high level, Cicero combines a dialogue
module with a strategic reasoning module,
along with a filtering process to reject low-
quality messages. A diagram of Cicero is pro-
vided in Fig. 1.

Dialogue

Cicero generates dialogue using a pretrained
language model that was further trained on
dialoguedata fromhumangamesofDiplomacy.
Crucially, in addition to being grounded in
both the dialogue history and game state, the
dialoguemodel was trained to be controllable
through intents, which we here define to be a
set of planned actions for the agent and its
speaking partner. This was accomplished by
automatically augmenting the human data
with inferred intents and using this informa-
tion as further conditioning during training.
For example, intents showing the agentmoving

into the territory Bulgaria (“BUL”) with sup-
port from its speaking partner might yield a
message such as “Could you support me into
BUL in return?” Grounding in intents re-
lieved the dialogue model of most of the re-
sponsibility for learning which actions were
legal and strategically beneficial. In particu-
lar, this control provided an interface be-
tween the dialogue generation and strategic
reasoning.

Strategic reasoning

Cicero uses a strategic reasoning module to
intelligently select intents and actions. This
module runs a planning algorithm that pre-
dicts the policies of all other players on the
basis of the game state and dialogue so far,
accounting for both the strength of different
actions and their likelihood in human games,
and chooses an optimal action for Cicero that
is based on those predictions. Planning relies
on a value and policy function trained through
self-play RL that penalized the agent for de-
viating too far from human behavior, to main-
tain a human-compatible policy. During each
negotiation period, intents are recomputed
every time Cicero sends or receives a message.
At the end of each turn, Cicero plays its most
recently computed intent.

Message filtering

Cicero passes each generatedmessage through
several filters designed to limit messages that

are nonsensical, inconsistent with intents, or
strategically poor.

Methods
Data

We obtained a dataset of 125,261 games of
Diplomacyplayed online atwebDiplomacy.net.
Of these, 40,408 games contained dialogue,
with a total of 12,901,662 messages exchanged
between players. Player accounts were de-
identified, and automated redaction of per-
sonally identifiable information (PII) was
performed bywebDiplomacy.We refer to this
dataset hereafter as WebDiplomacy.

Intent-controlled dialogue

Cicero generates messages through a neural
generative Diplomacy dialogue model that
was trained to be controllable through a set
of intents.

Imitation dialogue model

We took R2C2 (22) as our base model—a
2.7 billion–parameter Transformer-based (23)
encoder-decoder model pretrained on text
from the internet by using a BART denoising
objective (24). The base pretrained model
was then further trained onWebDiplomacy
(Methods, Data) through standard maxi-
mum likelihood estimation. Specifically, with
a dataset D ¼ x ið Þ; y ið Þ� �� �

, the model was
trained to predict a dialoguemessage y(i) from
playerA to playerB at time t, given all of the
following represented as text x(i): dialogue
history (all messages exchanged between
playerAand the six other players up to time t);
game state and action history (current game
state and recent action history); player rating
(rating for A corresponding to Elo rating
computed from games in WebDiplomacy);
game and message metadata (additional info
about game settings and the current message,
such as time since the lastmessage, and current
turn). Additionally, the model conditions on
intents (a set of proposed actions for playersA
and B for the current turn and future turns,
representing the intent for message y(i)). Fur-
ther details on the training data, training pro-
cedure, relevant hyperparameters, sampling
procedures, and other inference-timemethods
are provided in the SM, section D.1.
During play, we used additional modules

governing when to speak and to whom, which
are described in the SM, section D.4.

Controllable dialogue model
through intents

Standard languagemodeling approacheswould
train our dialogue model only to imitate the
messages from our dataset but not to outper-
form them. To go beyond imitation learning,
we made the dialogue model controllable by
generating messages conditioned on a plan
specified by the strategic reasoning module
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Dialogue-conditional 
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Intents

AUSTRIA: Hi Italy! Care to work 
together on this one? If you 
support me into BOH I think we'd 
both be able to grow quickly.

ITALY: Could you support me 
into BUL in return?

AUSTRIA: ...

AUSTRIA:  Hi Italy! Care to work 
together on this one? If you 
support me into BOH I think we'd 
both be able to grow quickly.

AUSTRIA: Sure thing! I have 
ordered SER to support GRE 
to BUL.

ITALY: Could you support me 
into BUL in return?

AUSTRIA:  VIE BOH, ...
ITALY: TYR S VIE BOH, ...

Message candidates

Fig. 1. Architecture of Cicero. Cicero predicts likely human actions for each player according to the board
state and dialogue, using that as the starting point for a planning algorithm using RL-trained models.
The output of planning is an action for the agent as well as beliefs about other players’ actions, which are
used to select intents for a dialogue model to condition on. Generated message candidates undergo several
filtering steps before a final message is sent.
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(intents), resulting in higher-quality messages.
More specifically, a message is defined to have
intent z if z is themost likely set of actions that
the sender and recipient will take—for both
the current turn and several future turns—if
no further dialogue occurs after themessage is
received. To establish this control, we devel-
oped techniques to automatically annotate
every message in the training set with a set of
actions corresponding to themessage content.
During training, the dialogue model learned
the distribution pq y ið Þ x ið Þ; z ið Þ�� ��

, where z(i)

represents the intent for datapoint [x(i), y(i)];
as a result, at inference, time z provides a point
of control over generation (25). We later de-
scribe the training and inference process, which
is also illustrated in the pipeline in Fig. 2. The
effect of the intents on the generated dialogue

is demonstrated in Fig. 3; conditioning on
different planned actions results in different
messages.
We considered other notions of intent during

development, such as controllingmessages to
focus on specific subsets of actions, third-party
actions, or to have a particular tone. Richer
intents are harder to annotate on humanmes-
sages, are harder to select with the planning
module, and create greater risk of taking the
language model out of distribution.

Annotating training messages with intents

When annotatingmessages in the training data
with corresponding intents, our goalwas for the
proposed actions z(i) to closely reflect the con-
tent of amessage y(i) so that at training time, the
model learned to exploit the information in z(i).

Naïvely, we could have used the actual ac-
tions played by the sender and recipient at
the end of each turn in the span of the intent.
However, these actions may not reflect the
content of a message if (i) a message is not
honest or (ii) subsequent messages change the
sender’s plans. To resolve (i), we predicted the
most likely action according to a dialogue-
conditional action prediction model trained
on a “truthful” subset of the dataset, in which
we predicted that a player’s dialogue was not
deceptive to others (SM, section D.2). This is
showcased in Fig. 2A; we refer to thismodel as
the intent model. To resolve (ii), we restricted
the dialogue history that this intentmodel saw
up to themessage in question, which signaled
to the model to predict actions as though the
dialogue had ended at that point in time. We
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Board state & history

Dialogue history ENG-FRA

A   Intent model training

ENG:Do you want NTH to support BEL?

ENG: Alright i’ll support you in

FRA: No, BEL is moving to HOL

Board state & history

Dialogue history ENG-FRA

ENG: Do you want NTH to support BEL?

ENG: Alright i’ll support you in

FRA: No, BEL is moving to HOL

ENG:NTH S BEL HOL, ...
FRA: BEL HOL, ...

Only trained on “truthful” 
situations where a zero-shot 
lie detector says the player 
wasn't lying about their orders.

Artificially injected 
agreement

Annotated
intents

B   Intent annotation

FRA: I’ve entered those ordersENG:NTH S BEL, ...
FRA: BEL H, ...

ENG: ...
FRA: ...

ENG: ...
FRA: ...

Intent model

Intent model ENG: Do you want NTH 
to support BEL?

Dialogue model

Board state & history

Dialogue history ENG-FRA

C   Dialogue model training

ENG:Do you want NTH to support BEL?

ENG: ...

FRA: No, BEL is moving to HOL

ENG:NTH S BEL HOL, ...
FRA: BEL HOL, ...

ENG:Alright, I’ll 
support you in

Dialogue model

Planning

Board state & history

Dialogue history ENG-FRA

D   Dialogue model inference

ENG: Bounce in the English Channel?

FRA: No, I need to move to MAO 
to protect against Italy

ENG: ...

ENG:LON NTH, ...
FRA: BRE MAO, ...

ENG:Okay, I’ll move 
to North Sea then.

Planned moves
(intents)

LEGEND

Model inputs

Training targets

ENG:...

FRA:...

Fig. 2. Illustration of the training and inference process for intent-controlled
dialogue. Actions are specified as strings of orders for units; for example, “NTH
S BEL - HOL” means that North Sea will support Belgium to Holland. (A) An “intent
model” was trained to predict actions for a pair of players on the basis of their
dialogue. Training data was restricted to a subset in which dialogue is deemed

“truthful” (SM, section D.2.3). (B) Each message in the dialogue training dataset was
annotated with the output of the intent model on the dialogue up to that point,
with an agreement message injected at the end. (C) The dialogue model was trained
to predict each dataset message given the annotated intent for the target message.
(D) During play, intents were supplied by the planning module instead.
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additionally added messages to the dialogue
history that suggested a conclusive agreement
between the two parties (Fig. 2B). As a result,
we obtained a high degree of correspondence
between the action annotated as the intent of
a message and the content, achieving a score
of 97% on a small test set designed to measure
this correspondence (compared with 77% for
a simpler baseline) (table S2). Then, the dia-
logue model could be trained in the manner
described in the above section Imitation dia-
logue model and in Fig. 2C (SM, section D.2).

Selecting intents during play

During play, Cicero used the strategic rea-
soning module to select intent actions for the
current turn (Fig. 2D), whereas intent actions
for future turns were generated bymeans of a
human-imitation model.

Agent intent action for current turn

Cicero conditioned its dialogue on the action
that it intends to play for the current turn.
This choicemaximizes Cicero’s honesty and its
ability to coordinate but risks leaking infor-
mation that the recipient could use to exploit
it (for example, telling them which of their
territories Cicero plans to attack) and some-
times led to out-of-distribution intents when

the intended action was hostile, because in
adversarial situations, humansmay rarely com-
municate their intent honestly. We describe
approaches for mitigating these risks in the
section Message filtering.

Recipient intent action for current turn

Cicero considered the subset of recipient ac-
tions with high likelihood under its beliefs
about their policy. High likelihood requires
that either an action is deemed beneficial for

the recipient and/or that they are believed to
be likely to play it given the dialogue. Among
this restricted set, Cicero selected the recip-
ient action with the highest expected value
for itself (SM, section D.2.4).

Dialogue modeling results

We compared the performance of our dialogue
model with a baseline without intent ground-
ing and one without intent or game-state
grounding (a “language model”). We report
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England convoys an army to Belgium with the 
support of France and Germany while taking Norway 
in a manner friendly to Russia.

England convoys an army to Norway and also 
aggressively moves to the Barents Sea against 
Russia.

England convoys an army to Norway and supports 
France to gain Belgium, preventing Germany from 
taking Belgium.

ENG FRA Mind supporting Edi - Bel?

ENG GER Do you wanna support my convoy to 
Bel? With Italy going aggressive France will fall 

and France.

ENG RUS How are you thinking Germany is 
gonna open? I may have a shot at Belgium, but I'd 
need your help into Den next year. 

ENG FRA What's the plan for Bel?

ENG GER I will be convoying my army to 

ENG RUS Hey, I moved to Edi to keep my 
options open. Do you have a problem with me 
putting an army in Nwy?

ENG FRA Let me know if you want me to 
support you to Bel, otherwise I'll probably poke Hol.

ENG GER Looks like you'll get three builds 
unless France bounces you! Are you gonna 
bounce Russia or not?

ENG RUS Hey, I moved to Edi to keep my 
options open. Do you have a problem with me 
putting an army in Nwy?

Depicted intents:

Example generations from the dialogue model with these actions as the conditioned intent:

Norway and moving to Barrents Sea.

Fig. 3. The effect of intents on Cicero’s dialogue. Pictured are three different possible intents in the same game situation. In each case, we show a message
generated by Cicero (England; pink) to France (blue), Germany (orange) and Russia (purple) conditioned on these intents. Each intent leads to quite different
messages, which are consistent with the intended actions.

Language model

+ game state grounding

+ intent grounding (CICERO)

61.90

84.13

87.30

76.19

83.33

92.86

20.64

29.37

37.30

8.02

7.94

7.70

Consistent 
with state

DIALOGUE QUALITY RATINGS (%)

Consistent 
with plan

High 
quality

Perplexity

Fig. 4. Controllable dialogue modeling results. We report dialogue quality ratings and perplexity on the
validation set for the Cicero dialogue model and compare them with a baseline without intent grounding and a
baseline without either intent or game-state grounding (“Language model”). Dialogue quality ratings were
calculated according to expert annotation of generated messages in 126 situations; we report the percent of
messages (before filtering) labeled as consistent with the game state, as consistent with the plan for the
next actions, and as particularly high quality. Lower perplexity corresponds to more probability mass on the
ground-truth human messages.
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both perplexity on the validation set and dia-
logue quality rating scores, which were cal-
culated on the basis of expert annotation of
messages generated in 126Diplomacy game
situations. Experts were asked to label whether
a message was (i) consistent with the game
state, (ii) consistent with the agent’s plan, and
(iii) notably high quality, compared with that
of an average human. Results are shown in
Fig. 4, and more details regarding this eval-
uation are provided in the SM, section D.2.3.
Our model outperformed the baselines on
all metrics. The improvement in validation
perplexity demonstrated that the model can
use additional grounding information to
better predict humanmessages. Expert anno-
tations showed that the grounding informa-
tion provided by the intents and game state
led to higher-quality messages that were
highly consistent with the agent’s intended
action.

Strategic reasoning

To generate the intents for dialogue and to
choose the final actions to play each turn, Cicero
ran a strategic reasoning module that predicts
other players’ policies (a probability distribu-
tion over actions) for the current turn accord-
ing to the state of the board and the shared
dialogue and then chose a policy for itself for

the current turn that responded optimally to
the other players’ predicted policies.
Doing this with human players requires

predicting how humans will play. A popular
approach in cooperative games is to model
the other players’ policies through supervised
learning on human data, which is commonly
referred to as behavioral cloning (BC). How-
ever, pure BC is brittle, especially because a
supervised model may learn spurious corre-
lations between dialogue and actions (fig. S6).
To address this problem, Cicero used variants

of piKL (26) to model the policies of players.
piKL is an iterative algorithm that predicts
policies by assuming each player i seeks to
both maximize the expected value of their
policy pi and minimize the Kullback-Leibler
(KL) divergence between pi and the BC policy,
which we call the anchor policy ti. An anchor
strength parameterl∈ 0;∞½ Þ trades off between
these competing objectives.

piKL: KL-regularized planning

piKL is an iterative algorithm that predicts
player policies. A complete description of the
algorithm can be found in the SM, section E.1.
piKL treats each turn in Diplomacy as its own
subgame in which each player i simultane-
ously chooses an action ai that results in joint
action a = (a1, ..., an), and then each player i

receives a reward ui(a) determined by a value
function ui. We discuss the training of this
value function later below.
piKL assumes player i seeks a policy pi that

maximizes the modified utility function

Ui pi; p�ið Þ ¼ ui pi; p�ið Þ � lDKL pi∥tið Þ ð1Þ

where p–i represents the policies of all players
other than i, and ui(pi, p–i) is the expected
value of pi given that other players play p–i.
Specifically, let Qt�1

i aið Þ ¼ ui ai; pt�i
�i

� �
and let

pDti aið Þºti aið Þexp Qt�1
i aið Þ
l

	 

ð2Þ

On each iteration t, piKL updates its predic-
tion of the players’ joint policies to be

pt ¼ t � 1

t

� �
pt�1 þ 1

t

� �
pDt ð3Þ

piKL provably converges to an equilibrium
in the modified utility space (26). When the
anchor strength l is set to a large value, piKL
predicts that player i’s policy will be close to
the anchor policy ti. When l is small, piKL
predicts that player i’s policy will have high
expected value and may deviate substantially
from ti.
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Cicero predicts England will retreat from ENG to NTH 
85% of the time, backs off its own fleet to NAO as 
agreed, and begins to move armies away from the 
coast.

Cicero does not back off its fleet but rather attacks EDI 
with it, and leaves its armies at the coast to defend 
against an attack from England, predicting that England 
will attack about 90% of the time.

Strategic planning rejects the possibility of vacating KIE 
and HOL, because it would make Cicero too vulnerable. 
Cicero backs off its fleet to NAO but keeps armies at 
the coast to defend.

ENG FRA  Yes! I'll leave ENG if you move KIE -> 
MUN and HOL -> BEL.

ENG FRA  You've been fighting me all game. 
Sorry, I can't trust that you won't stab me.

ENG FRA  Yes! I will move out of ENG if you 
head back to NAO.

England agrees: England is hostile: England tries to take advantage of Cicero:

Fig. 5. The effect of dialogue on Cicero’s strategic planning and intents.
Cicero (France; blue) and England (pink) are entangled in a fight, but it would be
beneficial for both players if they could disengage. Cicero has just messaged England
“Do you want to call this fight off? I can let you focus on Russia and I can focus on
Italy.” Pictured are three ways that England might reply and how Cicero adapts to

each. (Left and middle) Because Cicero’s planning anchors around a dialogue-
conditional policy model, its predictions for other players and accordingly its own
plans are flexible and responsive to negotiation with other players. (Right) Yet Cicero
also avoids blindly trusting what other players propose by rejecting plans that have low
predicted value and run counter to its own interests.
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A generalization of piKL referred to as
Distributional Lambda piKL (DiL-piKL) re-
places the single l parameter in piKL with a
probability distribution over l values (SM,
section E.1.3). On each iteration, each player
samples a l value from their distribution. In
practice, we found this led to better perfor-
mance (17).

Dialogue-conditional planning

Because dialogue influences the BC policy (the
anchor policy ti), piKL provides a mechanism
for dialogue to influence policy predictions.
Different possible messages between Cicero
and another player may produce different an-
chor policies (Fig. 5), which ultimately gives
different final predictions about what that
player will do.
Other players may of course be deceptive

about their plans. Cicero does not explicitly
predict whether a message is deceptive or not
but rather relies on piKL to directly predict the
policies of other players on the basis of both
the BC policy (which conditions on the mes-
sage) and on whether deviating from the BC
policy would benefit that player.
Because dialogue in Diplomacy occurs pri-

vately between pairs of players, Cicero must
reason about what information players have
access to when making predictions. For ex-
ample, if Cicero is coordinating an attack with
an ally against an adversary, Cicero’s predic-
tion of the adversary’s policy must account for
the adversary not being aware of the intended
coordination. Cicero accomplished this by pre-
dicting by means of pairwise piKL what every
other player’s policy will be.
Specifically, during strategic planning, for

each player j, Cicero computed an anchor
policy for both itself and player j on the basis
of their shared conversation, the board state,

and the recent action history. Cicero then ran
DiL-piKL for the two players to predict player
j’s policy. On each iteration, Cicero assumed
that the remaining five players would play
according to a policy computed by means of
RL, conditional on the policies of Cicero and
player j. This process gave an independent
prediction of each player’s policy.
Next, Cicero accounted for the players’ pol-

icies not being independent owing to their
ability to correlate their actions through pri-
vate dialogue that Cicero did not observe.
Cicero accomplished this by constructing an
approximate joint policy for all other players
through self-normalized importance sampling:
We sampled N = 1000 joint actions a from the
independent piKL policies of the other players
and reweighted themby the likelihood ratio of
a under the correlated and independent RL
policies, respectively.
Last, Cicero chose the action ai that best

responds to the predicted joint policy p–i of the
other players, while still being as consistent
as possible with its dialogue. Specifically,
Cicero chose the action argmaxaiui ai; p�ið Þ þ
llogti aið Þ, where ui is the RL value function,
ti(ai) is the probability of the action under the
dialogue-conditional imitation policy, and l =
3 × 10−3. Cicero used a smaller l for regulariz-
ing its best response than for its computation
of other players’ policies; thus, the dialogue
more strongly informed Cicero’s expectations
of how other players would coordinate while
still allowing Cicero more leeway to deviate
when the action that it predicted humans
would most likely choose in its situation was
suboptimal.

Self-play RL for improved value estimation

Applying piKL requires a state value function.
Self-play provides an avenue for training such

a value function but risks becoming incom-
patible with human play (16, 17). To address
this, we used piKL during self-play to keep the
policies human-compatible.
One challenge indoing self-play inDiplomacy

is that players may adapt their actions sub-
stantially on the basis of dialogue with other
players, including coordinating joint actions.
Explicitly simulating conversations would
be extremely expensive in RL. However, a key
insight is that a joint, shared BC policy trained
on the joint action distribution of the human
data already implicitly captures the effects of
dialogue on the action distribution of human
players by modeling that action distribution
directly.
We therefore developed Correlated and

Shared (CoShar) piKL, which allowed for reg-
ularization toward a joint, correlated anchor
policy t shared by all players rather than
toward per-player policies. In this way, we
relied on the joint anchor policy to capture
the correlation between all players’ policies.
Specifically, CoShar piKLdiffers from standard
piKL in that the probability of joint action a =
(a1, ..., an) in policy pDt becomes

pDt að Þºt að Þexp
X

i≤n

Qt�1
i aið Þ
l

	 

ð4Þ

We found that CoShar piKL retained much
of the correlation present in the joint anchor
policy t while also modeling strong human
play better than imitation alone.
Our resulting self-play algorithm operated

similarly to AlphaZero (27) and ReBeL (28) by
applying planning “in the loop” as the im-
provement operator for RL. In our case, plan-
ning was by use of an approximated version
of CoShar piKL. We generated self-play tra-
jectories in which on each turn we computed
the CoShar piKL policy using a learned state-
value model. We regressed the joint policy
model toward that policy and regressed the
value model toward the expected values of all
players under that policy. We then sampled a
joint action from that policy to generate the
next state in the trajectory. The anchor policy
was fixed throughout training to anchor the
RL near human play (SM, section E.4).

Message filtering

Prior work has shown that neural language
models suffer from contradictions and incon-
sistency as well as a tendency to “hallucinate,”
or generate factually incorrect information (29).
In the complex domain of Diplomacy, dialogue
models exhibit both these problems and other
more subtle mistakes, such as deviations from
the intents used to control the message or
blunders in the strategic content of the mes-
sage. We approached this problem by filtering
generatedmessages using a series of classifiers
and checks to detect common issues.Weoutline
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AUSTRIA: Of course, happy to do that!

ITALY: Fantastic!

ITALY: What are you thinking long term? 
Should I go for Turkey or head west

ITALY: I'm down to go for it. Would 
definitely need your help in 02 though

AUSTRIA: Yeah, he went to Armenia which is really 
great. You can go either way, but if Turkey is 
committing to Russia you could always lepanto

AUSTRIA: A lepanto into Turkey is really really strong, 
especially since he committed so hard against Russia

Example of coordination - CICERO is AUSTRIA

FRANCE:  I'll work with you but I need Tunis for now.

FRANCE: No, I need it.

FRANCE: You have Serbia and Rome to take.

FRANCE: Greece - Ionian  Ionian - Tyrr

FRANCE: Then in fall you take Rome and Austria collapses.

TURKEY: Nope, you gotta let me have it

TURKEY: they're impossible targets

TURKEY: hm, you're right

TURKEY: good ideas

Example of negotiation - CICERO is FRANCE

Fig. 6. Successful dialogue examples. Examples of Cicero (left) coordinating and (right) negotiating with
authors of this paper in test games.
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several of these filters here, with additional
details in the SM, section D.3.

Discriminating between human text
and counterfactuals

Much work has used adversarial or counter-
factual examples to improve the robustness of
natural language systems (30, 31). Following
this approach, we generated many kinds of
counterfactual messages that contained mis-
takes that language models are prone to, in-
cluding heuristically corrupted text as well as
model-generated negatives. We trained a suite
of 16 classifiers to discriminate between the
ground-truth human message and different
kinds of counterfactual messages (sometimes
varying the random seed or context informa-
tion available) and used these classifiers in an
ensemble to filter messages. This approach
risked overly filtering complex messages that
contain precise plans and accepting bland
messages, such as “ok,”which are unlikely to
containmistakes. However, we found that care-
fully designing our ensemble allowed us to
filter most nonsensical messages with mini-
mal impact on message complexity: On a small
evaluation set with 362 expert-annotated ex-
amples, we found that we could detect 83%
of nonsense messages, without substantial im-
pact to message diversity as measured by the
proxy of message length and the number of
references to Diplomacy-specific entities (SM,
section D.3.1).

Intent correspondence

As noted previously, controlling dialogue gen-
eration through intents has the twofold benefit
of improving the strategic value of a message
and reducing discussion of impossible moves
or other hallucinations. However, this control
is imperfect, and the dialogue model may gen-
erate messages that contradict the intents it
conditions on. To address this, we filtered mes-
sages that would reduce the likelihood of the
actions in the intent. Evaluating this method
on a small test set of 1013 expert-annotated
messages, we achieved a recall of 65%, filtering
24% of all messages (SM, section D.3.2).

Value-based filtering

Conditioning on intents can lead to “infor-
mation leakage,” in which the agent reveals
compromising information about its plan to
an adversary (section Selecting intents during
play). Tomitigate this, we developed amethod
to score potential messages by their estimated
value impact. We computed the piKL policies
for all agents after each candidate message
and filtered those that led to a lower expected
value (EV) for Cicero playing its intended
action. Expert evaluation on a set of 127 dia-
logue scenarios demonstrated that accepted
messages were preferred over filteredmessages
62% of the time (P < 0.05) (SM, section D.3.3).

Other filters
We additionally deployed other filters—for ex-
ample, to detect toxic language (SM, section
D.3.4)—and heuristics to curb bad behaviors,
including repetition and off-topic messages
(SM, section D.3.5).

Cicero in anonymous human play

Cicero participated anonymously in 40 games of
Diplomacy ina “blitz” leagueonwebDiplomacy.net
from 19August to 13October 2022. This league
playedwith 5-minnegotiation turns; these time
controls allowed games to be completed within
2 hours. Cicero ranked in the top 10% of par-
ticipants who playedmore than one game and
second out of 19 participants in the league that
played five ormore games. Across all 40 games,
Cicero’smean scorewas 25.8%,whichwasmore
than double the average score of 12.4% of its
82 opponents. As part of the league, Cicero
participated in an eight-game tournament that
involved 21 participants, six of whom played
at least five games. Participants could play a
maximumof six games, with their rank deter-
mined by the average of their best three games.
Cicero placed first in this tournament.
During games, players were not able to

see the usernames of other players. Although
webDiplomacy notifies users that the website
has participated in AI research and that cer-
tain game modes allow users to play with AI
agents, we evaluated Cicero in games with
humans in which the participants were not
explicitly informed that they were playing
with an AI agent for that particular game.
Cicero’s participation as anAIwas revealed to
all players at the conclusion of the research
(SM, section A.4).

Discussion

Cicero successfully combined strategic reason-
ing and dialogue to cooperate and negotiate
with humans on a complex task, achieving
strong human-level performance in the game
of Diplomacy. Furthermore, Cicero passed
as a human player for 40 games of Diplomacy
with 82 distinct players, and no in-game mes-
sages indicated that players believed that
they were playing with an AI agent. One
player mentioned in post-game chat a suspi-
cion that one of Cicero’s accounts might be
a bot, but this did not lead to Cicero being
detected as an AI agent by other players in
the league.
Two examples of coordination and negoti-

ation are shown in Fig. 6. In the coordination
example, we observed Cicero building an al-
liance through discussion of a longer-term
strategy. In the negotiation example, Cicero
successfully changed the other player’smind by
proposingmutually beneficialmoves. Despite
dishonesty being commonplace inDiplomacy,
we were able to achieve human-level perfor-
mancebycontrolling theagent’sdialogue through

the strategic reasoning module to be largely
honest and helpful to its speaking partners.
Although Cicero is shown to be effective at

cooperatingwith humans, it occasionally sent
messages that contained grounding errors,
contradicted its plans, or were otherwise stra-
tegically subpar. Although we reduced errors
with a suite of filters, Diplomacy poses an in-
teresting benchmark for studying this prob-
lem. We suspect that these mistakes did not
raise further suspicions that Cicero was an AI
agent because of the time pressure imposed
by the game, as well as because humans occa-
sionallymake similarmistakes. As such, formats
ofDiplomacywith longer negotiation periods
could provide an even further challenge for
future work because players typically engage
in more detailed and complex negotiation in
these formats.
Froma strategic perspective, Cicero reasoned

about dialogue purely in terms of players’ ac-
tions for the current turn. It did not model
how its dialoguemight affect the relationship
with other players over the long-term course
of a game. Considering this might allow it to
deploy dialogue more strategically. Further-
more, the expressive power of our intent rep-
resentation limited Cicero’s ability to control
richer affordances of dialogue such as strate-
gically revealing information, asking questions,
or providing explanations for its actions. There
remain many open problems for intentional
use of dialogue, andDiplomacy provides a rich
testbed to explore these connections between
strategy and communication, with the goal
of improving coordination between humans
and agents.

Ethical considerations

We discuss ethical considerations for this re-
search further in the SM, including privacy
considerations for data usage (SM, section A.1),
potential harms resulting from toxic or biased
language generation (SM, section A.2), avenues
for misuse of goal-oriented dialogue technol-
ogy (SM, section A.3), and AI agent disclosure
to human players (SM, section A.4).
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AI masters Diplomacy
The game Diplomacy has been a major challenge for artificial intelligence (AI). Unlike other competitive games that AI
has recently mastered, such as chess, Go, and poker, Diplomacy cannot be solved purely through self-play; it requires
the development of an agent to understand other players’ motivations and perspectives and to use natural language
to negotiate complex shared plans. The Meta Fundamental AI Research Diplomacy Team (FAIR) et al. developed an
agent that is able to play the full natural language form of the game and demonstrates performance well above the
human average in an online Diplomacy league. The present work has far-reaching implications for the development
of cooperative AI and language models for communication with people, even when interactions involve a mixture of
aligned and competing interests. —YS
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