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Summary of technical innovations in Pluribus relative to prior
poker AI systems

In this section we briefly summarize the technical innovations in Pluribus relative to prior poker

AI systems. These techniques are discussed in more detail in the body of the paper or later in

this supplementary material.

We split the innovations into three categories in the following three subsections, respectively.

Unfortunately, measuring the impact of each of these innovations would be too expensive due

to the extremely high variance in no-limit poker and the high dollar and time cost of conducting

experiments against humans. We provide estimates of the magnitude of the improvement where

possible.

Depth-limited search

Depth-limited search was the most important improvement that made six-player poker possi-

ble. It reduces the computational resources and memory needed by probably at least five orders

of magnitude. Libratus (6) always solved to the end of the game when real-time search was

used (Libratus started using real-time search on the third betting round—the half-way point

in the game—and in certain situations even earlier). However, additional players increase the

size of subgames exponentially. Conducting beneficial real-time search on the flop (the second

betting round) with more than three players involved is likely infeasible without depth-limited

search. DeepStack (5) used a form of depth-limited search in two-player poker, but the tech-

nique was already very expensive computationally in that context—because huge numbers of

belief-contingent subgames needed to be solved in advance to obtain leaf values for the real-

time search; this may not be feasible in six-player poker. We previously published a two-player
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version of depth-limited search in imperfect-information games that is far less expensive in

two-player poker than the real-time solving in Libratus or DeepStack (41). In this paper we

generalized that approach to more than two players and included a number of additional tech-

nical contributions as follows.

• Our previous depth-limited search had the searcher play the blueprint strategy while the

opponent chose among multiple continuation strategies. This is theoretically sound (in

two-player zero-sum games), but in practice gives the opponents more power and there-

fore makes the searcher relatively defensive/conservative. The current paper addresses

this weakness by having the searcher also choose among continuous strategies (which is

still theoretically sound in two-player zero-sum games). Our prior search algorithm in-

stead penalized the opponent to try to balance the players, but our new approach is more

effective, easier, and more elegant.

• Previous nested search algorithms either used nested safe search or nested unsafe search

(described in detail later in this supplementary material). Nested unsafe search is not

theoretically sound, and in some cases may do extremely poorly, but on average tends

to perform better in practice. We use a new form of nested unsafe search in this paper

in which we always solve starting at the beginning of the current betting round rather

than starting at the most recent decision point. Our player’s strategy is held fixed for

actions that it has already chosen in the betting round. However, the approach allows the

other players to have changed strategies anywhere in the current betting round, that is,

even above the current decision point. Taking that possibility into account mitigates the

potential for unsafe search to be exploitable, while still retaining its practical benefits.
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Equilibrium finding

Pluribus also has innovations in the equilibrium finding algorithms that are used in the blueprint

computation and within the depth-limited search. Here we summarize them and we describe

each of them in detail in the paper body or later in this supplementary material.

• We used Linear MCCFR rather than traditional MCCFR. While we already published

Linear MCCFR recently (38), it was never implemented and tested at scale. We suspect

this sped up convergence by about a factor of 3.

• Our Linear MCCFR algorithm used a form of dynamic pruning that skipped actions with

extremely negative regret in 95% of iterations. A similar idea was used in Libratus and

in BabyTartanian8 (our AI that won the 2016 Annual Computer Poker Competition), but

in those cases the skipping was done everywhere. In contrast, in Pluribus, in order to

reduce the potential inaccuracies involved with pruning, we do not skip actions on the

last betting round (because on the last betting round one does not get the benefits of

effectively increasing the card abstraction through pruning) or actions leading to terminal

payoffs (because the cost of examining those payoffs is minor anyway). Additionally,

whether or not to skip in Libratus/BabyTartanian8 was decided separately for each action

rather than deciding for the entire iteration; the latter is cheaper due to fewer calls to a

random number generator, so we do the latter in Pluribus. We suspect that these changes

contributed about a factor of 2 speedup.

Memory usage

To conserve memory, Pluribus allocates memory for the regrets in an action sequence only when

the sequence is encountered for the first time (except on the first betting round which is small

and allocated up front). This is particularly useful in 6-player poker, in which there are many
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action sequences that never occur. This reduced memory usage by more than a factor of 2.

Rules for no-limit Texas hold’em poker

No-limit Texas hold’em (NLTH) has been the most common form of poker for more than a

decade. It is used, for example, to determine the winner of the World Series of Poker Main

Event. Six-player NLTH poker is the most widely played format of NLTH.

Each player starts each hand with $10,000 and the blinds (the amount of money that Player 1

and Player 2 must contribute to the pot before play begins) are $50 and $100, so each player

starts with 100 big blinds, which is the standard buy-in amount for both live and online play.

By having each hand start with the same number of chips, we are able to treat each hand as a

separate sample when measuring win rate.

NLTH consists of four rounds of betting. On a round of betting, each player can choose to

either fold, call, or raise. If a player folds, they are considered to no longer be part of the hand.

That is, the player cannot win any money in the pot and takes no further actions. If a player

calls, that players places a number of chips in the pot equal to the most that any other player

has contributed to the pot. If a player raises, that player adds more chips to the pot than any

other player so far. A round ends when each player still in the hand has acted and has the same

amount of money in the pot as every other player still in the hand.

The initial raise on each round must be at least $100. Any subsequent raise on the round

must be at least as large as the previous raise (i.e., at least as large as the amount of money

beyond a call that the previously-raising player contributed). No player can raise more than

their remaining amount of money (which starts at $10,000).

The first round starts with Player 3 and each subsequent round starts with Player 1 (if

Player 1 is still in the hand). Play proceeds through each consecutive player still in the hand,

with Player 1 following Player 6 if the round has not yet ended. On the first round, Player 1
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must contribute $50 and Player 2 must contribute $100 before play begins.

At the start of the first round, every player receive two private cards from a standard 52-card

deck. At the start of the second round, three community cards are dealt face up for all players

to observe. At the start of the third betting round, an additional community card is dealt face

up. At the start of the fourth betting round, a final fifth community card is dealt face up. If

at any point only one player remains in the hand, that player collects all the money that all

players have contributed to the pot. Otherwise, the player with the best five-card poker hand,

constructed from the player’s two private cards and the five face-up community cards, wins the

pot. In the case of a tie, the pot is split equally among the winning players.

For the next hand—i.e., the next repetition of the game—player 2 becomes player 1, player

3 becomes player 2, etc.

Experimental setup and participants

The players were allowed to take as long as they wanted for any decision. The players were

instructed to not use any software to assist them with forming their strategy while playing.

The two human participants in the 1H+5AI experiment were Chris “Jesus” Ferguson and

Darren Elias. Chris Ferguson has won more than $9.2 million playing live poker and has won

six World Series of Poker events, including most famously the 2000 World Series of Poker Main

Event. Darren Elias has won more than $7.1 million playing live poker and $3.8 million playing

online poker. He holds four World Poker Tour titles and two World Championship of Online

Poker titles. He is regarded as an elite player in this specific form of poker.

Both players were allowed to play at home on their own schedule. They could take as much

time for any decision as they wanted and were told Pluribus would not change its strategy based

on how long they took to make a decision. They were allowed—but not required—to play up

to four tables simultaneously. Elias usually chose to play four tables while Ferguson usually
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chose to play one.

The human participants in the 5H+1AI experiment were Jimmy Chou, Seth Davies, Michael

Gagliano, Anthony Gregg, Dong Kim, Jason Les, Linus Loeliger, Daniel McAulay, Greg Mer-

son, Nicholas Petrangelo, Sean Ruane, Trevor Savage, and Jacob Toole. All participants have

won at least $1 million playing poker professionally.

Each human player was assigned an alias that they would use throughout the experiment.

The humans could see the aliases of the humans they were playing with, but did not know the

identity of the human behind the alias. We made no effort to mask the identity of Pluribus. On

each day, five players were selected among those who volunteered to play from the pool of 13

players. In some cases due to player availability, the day was divided into multiple sessions with

a different set of players in each session. The length of play on each day lasted between three

hours and eight hours, but was typically four hours. There were breaks every two hours lasting

at least ten minutes. The assignment of players to seats (i.e., player order) was determined

randomly at the beginning of each day.

Players were asked, but not required, to play four tables simultaneously. This was later

changed to a maximum of six tables at the request of the players (due to the lack of a time

limit on decisions). The players played at a pace of about 180 hands per hour when playing

four tables. The humans were asked to not try to uncover the identity of any other participant

in the experiment, to not mention the experiment to anyone while it was happening, and to not

intentionally collude with any player (which is not allowed in poker).

The players were paid a minimum of $0.40 per hand played, but this could increase to as

much as $1.60 per hand based on performance. The compensation structure was designed to as

closely as possible align the incentives of the players with those of a normal cash game, while

still guaranteeing the players would not lose money and would divide a fixed-sized prize pool.

Specifically, each player was paid $(1 + 0.005X) per hand, where X is the player’s adjusted
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variance-reduced win rate in terms of mbb/game with a floor at X = −120 and a ceiling at

X = 120. Any player that lost more than −120 mbb/game or won more than 120 mbb/game

after the application of variance reduction had the excess winnings or losses divided among all

the players proportional to the number of hands each player played (after first canceling out all

players’ excess winnings with all players’ excess losses as much as possible and canceling out

all of Pluribus’s winnings or losses). Players were not informed of their variance-reduced win

rates until after the experiment was completed.

Statistical analysis

For the 1H+5AI experiments, each participant played 5,000 hands for a total of 10,000 hands.

For the 5H+1AI experiment, a total of 10,000 hands were played. In both the 5H+1AI experi-

ment and the 1H+5AI experiment, we used a one-tailed test to determine at the 95% confidence

level whether Pluribus was stronger than the humans.

Each hand in each experiment format was treated as an independent and identically dis-

tributed sample. (Theoretically speaking, this assumption may not be exactly accurate because

humans may adjust their strategy over the course of the experiment. Nevertheless, this assump-

tion is the standard assumption that is used in this field of research.)

In the case of the 1H+5AI experiment, we only measure whether Pluribus is profitable

against both players in aggregate since that was what the experiment was designed to mea-

sure. In fact, the only reason we used two humans is that it would have taken prohibitively

long for one human to complete all of the 10,000 hands. That said, we also do report p-values

for the individual players for completeness. Chris Ferguson was behind by an average of 25.2

mbb/game with a standard error of 20.2 mbb/game, which would be a p-value of 0.106. Darren

Elias was behind by an average of 40.2 mbb/game with a standard error of 21.9, which would be

a p-value of 0.033. Across both players, the average was 32.7 mbb/game with a standard error
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of 14.9 mbb/game. Pluribus was determined to be profitable with a p-value of 0.014, which is

statistically significant at the 95% confidence level, the standard threshold used in this field of

research.

For the 5H+1AI experiment, Pluribus earned an average of 47.7 mbb/game with a standard

error of 25.0 mbb/game. Pluribus was determined to be profitable with a p-value of 0.028,

which is statistically significant at the 95% confidence level.

In the 5H+1AI experiment the human participants played an additional 13 hands beyond the

requested 10,000. We did not include those additional hands in our analysis. With the additional

hands included, Pluribus’s win rate would increase to 50.9 mbb/game.

AIVAT could not be meaningfully applied for individual human players because AIVAT

can only account for chance nodes, Pluribus’s strategy across all possible hands, and Pluribus’s

probability distribution over actions. For human players, their probability distribution over

actions and their strategy across all possible hands is unknown. Since most hands a human

plays only minimally involves Pluribus, that only leaves chance nodes as something AIVAT can

always control for. Table S1 shows results for each human participant (listing only their alias)

after applying a relatively modest variance-reduction technique that for each player subtracts

the expected value (according to Pluribus’s blueprint) of each hand given all players’ private

cards.

Notation and background

In an imperfect-information extensive-form (i.e., tree-form) game there is a finite set of players,

P . A node (i.e., history) h is defined by all information of the current situation, including private

knowledge known to only one player. A(h) denotes the actions available at a node and P (h) is

either chance or the player whose turn it is to act at that node. We write h ≺ h′ if a sequence

of actions leads from h to h′. We represent the node that follows h after choosing action a by
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h · a. H is the set of all nodes. Z ⊆ H are terminal nodes for which no actions are available

and which award a value to each player.

Imperfect information is represented by information sets (infosets) for each player p ∈ P .

For any infoset I belonging to p, all nodes h, h′ ∈ I are indistinguishable to p. Moreover, every

non-terminal node h ∈ H belongs to exactly one infoset for each p.

A strategy (i.e., a policy) σ(I) is a probability vector over actions for acting player p in

infoset I . Since all states in an infoset belonging to p are indistinguishable, the strategies in

each of them must be identical. The set of actions in I is denoted by A(I). The probability of

a particular action a is denoted by σ(I, a) or by σ(h, a). We define σp to be a strategy for p in

every infoset in the game where p acts. A strategy profile σ is a tuple of strategies, one for each

player.

We denote reach by πσ(h). This is the probability with which h is reached if all players play

according to σ. πσp (h) is the contribution of p to this probability. πσ−p(h) is the contribution of

chance and all players other than p.

A public state G is defined as a set of nodes that an outside observer with no access to

hidden information cannot distinguish. Formally, for any node h ∈ G, if h, h′ ∈ I for some

infoset I , then h′ ∈ G. An imperfect-information subgame, which we simply call a subgame, S

is a union of public states where if any node A leads to any node B and both A and B are in S,

then every node between A and B is also in S. Formally, for any node h ∈ S, if h, h′ ∈ I for

some infoset I then h′ ∈ S . Moreover, if h ∈ S and h′′ ∈ S and there is a sequence of actions

leading from h to h′′ (i.e., h ≺ h′′), then for every node h′ such that h ≺ h′ ≺ h′′, h′ ∈ S.

Variance reduction via AIVAT

We scored the players using a form of AIVAT modified to handle games with more than two

players (44). AIVAT provides an unbiased estimate of the true win rate while reducing variance
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in practice by about a factor of 9. We now provide a brief description of AIVAT.

Every time Pluribus acts at node h, its strategy defines a probability distribution over actions.

Let σ(h, a) be the probability that Pluribus chooses action a. Given all players’ strategies, there

is some unknown value v(h, a) for choosing action a. Define v(h) =
∑

a∈A(h) σ(h, a)v(h, a).

v(h) gets passed up to the parent node, which repeats until eventually we can compute v(∅) (the

value for the root node, that is, the value for the entire hand). If we knew v(h, a) exactly for

each action a, then we could simply return
∑

a∈A(h) σ(h, a)v(h, a). Unfortunately we do not

know v(h, a) because that would require knowledge of the other players’ strategies. Instead,

by choosing action a and playing the rest of the hand, Pluribus eventually receives some value

v̂(h, a) that is a sample drawn from a distribution whose expectation is v(h, a).

If we received one sample for each action, then we could return
∑

a∈A(h) σ(h, a)v̂(h, a)

and in expectation this would be the same as
∑

a∈A(h) σ(h, a)v(h, a). However, since only one

action can be chosen during a hand, we define v̂′(h, a) = v̂(h, a) if a was the one action that

was sampled, and v̂′(h, a) = 0 otherwise. Then
∑

a∈A(h) v̂
′(h, a) is an unbiased estimate of∑

a∈A(h) σ(h, a)v(h, a) that only requires a sample for one action (though the variance may be

quite high).

While we do not know v(h, a) exactly, we may have a reasonable estimate of it. We can

leverage this estimate to compute a lower-variance estimate of
∑

a∈A(h) σ(h, a)v(h, a) that is

still unbiased. Specifically, suppose we have arbitrary values ṽ(h, a) for each action a (where

we would like ṽ(h, a) ≈ v(h, a), but this is not required). Then
∑

a∈A(h) σ(h, a)v(h, a) =∑
a∈A(h) σ(h, a)

(
v(h, a) − ṽ(h, a)

)
+
∑

a∈A(h) σ(h, a)ṽ(h, a). Let a∗ be the action that is ran-

domly sampled according to probability distribution σ(h). Then ṽ(h, a∗) is an unbiased esti-

mate of
∑

a∈A(h) σ(h, a)ṽ(h, a) and, as previously established, v̂(h, a∗) is an unbiased estimate

of
∑

a∈A(h) σ(h, a)v(h, a). So v̂(h, a∗) − ṽ(h, a∗) +
∑

a∈A(h) σ(h, a)ṽ(h, a) is an unbiased es-

timate of
∑

a∈A(h) σ(h, a)v(h, a). But if ṽ(h, a∗) ≈ v(h, a∗), then this estimate will likely
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have lower variance than v̂(h, a∗). Moreover, we can pass up the value v̂(h, a∗) − ṽ(h, a∗) +∑
a∈A(h) σ(h, a)ṽ(h, a) rather than passing up v̂(h, a∗).

This variance-reduction approach also applies to chance nodes, because the probability dis-

tribution at chance nodes is known and fixed. However, it does not apply to human decision

points, because the humans do not give a probability distribution for their actions.

Furthermore, Pluribus determines its strategy for every hand it could be holding (its entire

range) rather than just the hand it was dealt. It can therefore estimate what its payoff would

have been for each of these hands. This lowers variance even further.

Each copy of Pluribus runs AIVAT independently. The human’s average win rate is simply

the negative of the average of each AI’s win rate. To reduce variance even further in the 1H+5AI

experiments, we replay each hand with a copy of Pluribus in the human’s position. We will

refer to this copy of Pluribus in the human’s position as the Control. The human’s win rate is

subtracted by the Control’s win rate (which in expectation must be zero, since it is the same

agent as its opponents). Moreover, if a hand ends with both the human and the Control folding

in the first betting round, and the sequence of actions in the hand up to that point is identical in

both cases, then that hand is treated as having zero expected value. This does not bias the result

because the human and the Control do not make any further decisions in the hand, and have

acted identically up to that point.

Hardware usage

Pluribus was trained on the Bridges supercomputer at the Pittsburgh Supercomputing Center.

The blueprint strategy was trained on a single 64-core large shared memory node that has four

16-core Intel Xeon E5-8860 v3 CPUs. Although the node has 3 TB of memory available, less

than 0.5 TB was needed. When playing in real time, Pluribus runs on a single 28-core, 128 GB

regular shared memory node. The node uses two 14-core Intel Haswell E5-2695 v3 CPUs. No
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GPUs were used at any point.

Further details of the abstraction algorithm

NLTH is a massive game that would be infeasible to store in memory. Abstraction reduces the

size of NLTH by bucketing similar decision points together and by eliminating some actions

from the game. A strategy is computed for this simplified, abstract version of the game and that

strategy is used as a guide for how the full version of NLTH should be played. We used abstrac-

tion in Pluribus both for the precomputed blueprint strategy and for the strategies computed

during real-time search.

There are two main forms of abstraction: action abstraction and information abstraction.

Two infosets are bucketed together and treated identically if they share the same action-abstraction

sequence and the same information-abstraction bucket.

Action abstraction involves reducing the number of actions that can be taken in the game.

NLTH normally allows a player to raise any dollar increment between the minimum legal raise

(which may be as low as $100) and the number of remaining chips (which may be as high

as $10,000). The action abstraction we use allows between one and 14 different raise sizes

depending on the particular decision point. All raise sizes are fractions of the size of the pot.

These candidate raise sizes for Pluribus’s algorithms to consider were decided by hand based on

what raise sizes earlier versions of Pluribus decided to use with significant positive probabilities.

The action abstraction of the blueprint strategy is particularly fine-grained on the first bet-

ting round because Pluribus usually does not use real-time search on this round. The action

abstraction is more coarse on the second betting round. On the third and fourth betting round,

there are at most three raise sizes for the first raise in the round (either 0.5× the size of the pot,

1× the size of the pot, or all remaining chips), and at most two for the remaining raises in a

round (1× the size of the pot or all remaining chips). During real-time search, the number of
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raise sizes varies between one and six. The fold and call actions were always included when

they were legal actions in both the blueprint and real-time search.

There are a total of 664,845,654 action sequences in the blueprint action abstraction. How-

ever, only 413,507,309 of them were ever encountered during training. To reduce memory us-

age, memory for the regrets of an action sequence was only allocated when the action sequence

was encountered for the first time. During real-time search, the number of action sequences

(considering only players’ actions, not chance’s actions) in the subgame action abstraction is

between 100 and 2,000.

Information abstraction buckets together situations based on the revealed chance outcomes.

In poker, this is the private cards dealt to the player and the public board cards. We refer to a

sequence of revealed private cards and revealed board cards as an information situation. Loss-

less abstraction only buckets together strategically identical information situations (46,47). For

example, 2♠6♠ is strategically identical to 2♥6♥ on the first betting round, so there is no loss

in strategy quality if these two hands are treated identically. If lossless abstraction were applied

on each round, there would be 169, 1,286,792, 55,190,538, and 2,428,287,420 strategically

unique information situations on the first, second, third, and fourth betting rounds, respectively.

However, we only use lossless abstraction on the first betting round. Lossy abstraction buckets

together information situations that are not strategically identical, but that ideally are strategi-

cally similar. We use lossy abstraction on each betting round after the first one, with 200 buckets

per round. That is, on each round after the first one, each information situation is put into one

of 200 buckets, with the information situations in each bucket being treated identically. Infor-

mation situations were bucketed using k-means clustering on domain-specific features (26).

The real-time search algorithm only uses lossless information abstraction for the round it

is in. For later rounds, it uses lossy information abstraction with 500 buckets per round. That

is, on each round, each information situation is put into one of 500 buckets, with information

13



situations in the same bucket being treated identically. These buckets were determined sepa-

rately for each “flop” (the first three revealed board cards) using an algorithm that considers the

future potential of each poker hand (28). That algorithm combines the idea of potential-aware

abstraction (48) with clustering based on earth-mover distance (27).

Further details of the blueprint computation algorithm

We computed the blueprint strategy for Pluribus using external-sampling Monte Carlo Counter-

factual Regret Minimization (29, 35) with two important improvements.

First, we used linear weighting for both the regret and average strategies for the first 400

minutes of the run (38). (We stop the discounting after that because the time cost of doing the

multiplications with the discount factor is not worth the benefit later on.) Specifically, after

every 10 minutes for the first 400 minutes, the regrets and average strategies were discounted

by T/10
T/10+1

, where T is the number of minute that have elapsed since the start of training. Exper-

iments in two-player NLTH subgames show that this modification speeds up convergence by

about a factor of 3 (38).

Second, our MCCFR algorithm did not explore every traverser action on every iteration

after the first 200 minutes. Instead, for 95% of iterations, traverser actions with regret below

-300,000,000 were not explored unless those actions were on the final betting round or those

actions immediately led to a terminal node. In the remaining 5% of iterations, every traverser

action was explored. This “pruning” of negative-regret actions means iterations can be com-

pleted more quickly. More importantly, it also effectively leads to a finer-grained information

abstraction. For example, on the second betting round there are on average 6,434 infosets per

abstract infoset bucket. The strategy for that abstract infoset bucket must generalize across all

of those 6,434 infosets. But with pruning, many of those 6,434 infosets are traversed only 5% as

often, so the strategy for the abstract infoset can better focus on generalizing across infosets that
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are likely to actually be encountered during strong play. Negative-regret pruning has previously

been used with great success in two-player NLTH (6, 33, 34). In six-player NLTH, the benefit

of this pruning is even larger in practice because good strategies in six-player NLTH involve

folding most hands early in the game, so an even smaller fraction of the game tree is reached

with positive probability by the final strategy. The pseudocode for the blueprint computation is

shown in Algorithm 1.

To save memory, regrets were stored using 4-byte integers rather than 8-byte doubles. There

was also a floor on regret at -310,000,000 for every action. This made it easier to unprune

actions that were initially pruned but later improved. This also prevented integer overflows.

Since CFR’s average strategy is not guaranteed to converge to a Nash equilibrium in six-

player poker, there is no theoretical benefit to using the average strategy as opposed to the

current strategy. Nevertheless, after the initial 800 minutes of training, we stored the average

strategy for the first betting round and used this as the blueprint strategy for the first betting

round. For situations after the first betting round, a snapshot of the current strategy was taken

every 200 minutes after the initial 800 minutes of training. The blueprint strategy after the first

betting round was constructed by averaging together these snapshots (32). Averaging together

snapshots that were saved to disk rather than maintaining the average strategy in memory for

situations after the first round reduced memory usage by nearly half, and also reduced the

computational cost of each MCCFR iteration.

Further details of the real-time search algorithm

The real-time search component of Pluribus, which determines an improved strategy during

actual play, is the most intricate component of the system. On the first betting round, real-time

search is used if an opponent chooses a raise size that is more than $100 off from any raise

size in the blueprint action abstraction and there are no more than four players remaining in the
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Algorithm 1 MCCFR with Negative-Regret Pruning
The final strategy for infoset I is φ(I) normalized.

1: function MCCFR-P(T ) . Conduct External-Sampling Monte Carlo CFR with Pruning
2: for Pi ∈ P do
3: for Ii ∈ Ii where P (Ii) = i do
4: for a ∈ A(Ii) do
5: R(Ii, a)← 0
6: if betting round(Ii) = 0 then
7: φ(Ii, a)← 0

8: for t = 1 to T do
9: for Pi ∈ P do

10: if t mod Strategy Interval = 0 then . Strategy Interval = 10,000 in Pluribus
11: UPDATE-STRATEGY(∅, Pi)
12: if t > Prune Threshold then . Prune Threshold is 200 minutes in Pluribus
13: q ∼ [0, 1) . Sample from a uniform random distribution between 0 and 1
14: if q < 0.05 then
15: TRAVERSE-MCCFR(∅, Pi)
16: else
17: TRAVERSE-MCCFR-P(∅, Pi)
18: else
19: TRAVERSE-MCCFR(∅, Pi)
20: if t < LCFR Treshold and t mod Discount Interval = 0 then
21: d← t/Discount Interval

t/Discount Interval+1 . Discount Interval is 10 minutes in Pluribus
22: for Pi ∈ P do
23: for Ii ∈ Ii where P (Ii) = i do
24: for a ∈ A(Ii) do
25: R(Ii, a)← R(Ii, a) · d
26: φ(Ii, a)← φ(Ii, a) · d

return φ

27: function CALCULATE-STRATEGY(R(Ii), Ii) . Calculates the strategy based on regrets
28: sum← 0
29: for a ∈ A(Ii) do
30: sum← sum +R+(Ii, a)

31: for a ∈ A(Ii) do
32: if sum > 0 then
33: σ(Ii, a)← R+(Ii,a)

sum
34: else
35: σ(Ii, a)← 1

|A(Ii)|

36: return σ(Ii)
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1: function UPDATE-STRATEGY(h, Pi) . Update the average strategy for Pi
2: if h is terminal or Pi not in hand or betting round(h) > 0 then
3: return . Average strategy only tracked on first betting round
4: else if h is a chance node then
5: a ∼ σ(h) . Sample an action from the chance probabilities
6: UPDATE-STRATEGY(h · a, Pi)
7: else if P (h) = Pi then
8: Ii ← Ii(h) . The Pi infoset of this node
9: σ(Ii)← CALCULATE-STRATEGY(R(Ii), Ii) . Determine the strategy at this infoset

10: a ∼ σ(Ii) . Sample an action from the probability distribution
11: φ(Ii, a)← φ(Ii, a) + 1 . Increment the action counter
12: UPDATE-STRATEGY(h · a, Pi)
13: else
14: for a ∈ A(h) do
15: UPDATE-STRATEGY(h · a, Pi) . Traverse each action

16: function TRAVERSE-MCCFR(h, Pi) . Update the regrets for Pi
17: if h is terminal then
18: return ui(h)
19: else if Pi not in hand then
20: return TRAVERSE-MCCFR(h · 0, Pi) . The remaining actions are irrelevant to Pi
21: else if h is a chance node then
22: a ∼ σ(h) . Sample an action from the chance probabilities
23: return TRAVERSE-MCCFR(h · a, Pi)
24: else if P (h) = Pi then
25: Ii ← Ii(h) . The Pi infoset of this node
26: σ(Ii)← CALCULATE-STRATEGY(R(Ii), Ii) . Determine the strategy at this infoset
27: v(h)← 0 . Initialize expected value at zero
28: for a ∈ A(h) do
29: v(h, a)← TRAVERSE-MCCFR(h · a, Pi) . Traverse each action
30: v(h)← v(h) + σ(Ii, a) · v(h, a) . Update the expected value
31: for a ∈ A(h) do
32: R(Ii, a)← R(Ii, a) + v(h, a)− v(h) . Update the regret of each action
33: return v(h) . Return the expected value
34: else
35: IP (h) ← IP (h)(h) . The PP (h) infoset of this node
36: σ(IP (h))← CALCULATE-STRATEGY(R(IP (h)), IP (h))
37: a ∼ σ(IP (h)) . Sample an action from the probability distribution
38: return TRAVERSE-MCCFR(h · a, Pi)
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1: function TRAVERSE-MCCFR-P(h, Pi) . MCCFR with pruning for very negative regrets
2: if h is terminal then
3: return ui(h)
4: else if Pi not in hand then
5: return TRAVERSE-MCCFR-P(h · 0, Pi) . The remaining actions are irrelevant to Pi
6: else if h is a chance node then
7: a ∼ σ(h) . Sample an action from the chance probabilities
8: return TRAVERSE-MCCFR-P(h · a, Pi)
9: else if P (h) = Pi then

10: Ii ← Ii(h) . The Pi infoset of this node
11: σ(Ii)← CALCULATE-STRATEGY(R(Ii), Ii) . Determine the strategy at this infoset
12: v(h)← 0 . Initialize expected value at zero
13: for a ∈ A(h) do
14: if R(Ii, a) > C then . C is -300,000,000 in Pluribus
15: v(h, a)← TRAVERSE-MCCFR-P(h · a, Pi)
16: explored(a)← True
17: v(h)← v(h) + σ(Ii, a) · v(h, a) . Update the expected value
18: else
19: explored(a)← False
20: for a ∈ A(h) do
21: if explored(a) = True then
22: R(Ii, a)← R(Ii, a) + v(h, a)− v(h) . Update the regret for this action
23: return v(h) . Return the expected value
24: else
25: IP (h) ← IP (h)(h) . The PP (h) infoset of this node
26: σ(IP (h))← CALCULATE-STRATEGY(R(IP (h)), IP (h))
27: a ∼ σ(IP (h)) . Sample an action from the probability distribution
28: return TRAVERSE-MCCFR-P(h · a, Pi)
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hand. Otherwise, Pluribus uses the randomized pseudo-harmonic action translation algorithm

(which empirically has the lowest exploitability of all known action translation algorithms) to

map the raise to a nearby size and proceeds to play according to the blueprint strategy as if

that mapped raise size had been chosen (39). Real-time search is always used to determine the

strategy on the second, third, and fourth betting rounds.

Structure of imperfect-information subgames in Pluribus

In perfect-information games, search begins at a root node, which is the current state of the

world. Players are able to change their strategy below the root node until a leaf node of the

search space is reached (or a terminal node that ends the game is reached). A leaf node’s value

is fixed and ideally approximates the value that would ensue if all players played perfectly

beyond the leaf node. In practice, this value can be estimated by, for example, using a game-

specific heuristic or by assuming that all players play according to the blueprint strategy after

the leaf node. The root, the leaves, and the nodes in between them constitute a subgame.

For perfect-information games, if the value of each leaf node equals the value of both players

playing perfectly from that point forward and the subgame is solved exactly (i.e., no player can

do better given every other player’s strategy in the subgame), then the solution to the subgame is

part of a Nash equilibrium strategy. Thus, search is a method of achieving in real time a closer

approximation of a Nash equilibrium compared to the blueprint strategy.

Pluribus uses a generalized form of this search paradigm that allows it to be run in imperfect-

information games. The two main modifications are how the root of the subgame is represented

and how the values at the leaf nodes are calculated.

Since players do not know the exact node they are in when playing an imperfect-information

game, it is not possible to have a single root node. Instead, the “root” of a subgame in Pluribus

is a probability distribution over the nodes in a public state G. The probability of a node is the
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normalized probability that that node would be reached assuming that all players play according

to a strategy profile σ. Formally, the root of an imperfect-information subgame in Pluribus is a

chance node with outcomes that lead to each node in the root public state. The probability of

the chance node outcome leading to node h is πσ(h)∑
h′∈G π

σ(h′)
, where G is the root public state.

If the root probability distribution is correct (that is, all players were indeed playing accord-

ing to σ), then solving the remainder of the game starting at the root public state would produce

an optimal strategy going forward (if there are only two players remaining in the hand, or if all

remaining players play the same solution). Of course, it is not possible for Pluribus to know the

strategy profile σ that all players played (and therefore know the true probability distribution

over nodes in G) because Pluribus does not have access to the other players’ strategies, only

their observed actions.

To handle this problem, Pluribus calculates what its strategy would be in each situation

where an opponent has acted, and assumes the opponent followed that strategy. We refer to

this as unsafe search (49). Unsafe search lacks theoretical guarantees on performance even in

two-player zero-sum games and there are cases where it leads to highly exploitable strategies.

While safe search alternatives exist that have provable guarantees on exploitability in two-player

zero-sum games (50–52), in practice they tend to do worse than modern, careful unsafe search

in head-to-head performance. Unsafe search has the added benefit that it is not necessary to

compute a strategy for a hand that has zero probability. In six-player poker, most hands are

folded with 100% probability in the first action, so whenever search is conducted, there is

typically only a small fraction of hands for which a strategy actually needs to be computed.

This makes unsafe search faster by about a factor of four.

To obtain the practical benefits of unsafe search while mitigating the potential for highly

exploitable strategies, we use a new form of nested search in this paper that is similar to nested

unsafe search but which always solves starting at the beginning of the current betting round
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(described in the body of this paper) rather than starting at the most recent decision point.

The traversers strategy is held fixed for actions the traverser has already chosen in the betting

round. Experimental results show that if the root public state follows a chance node with a

large branching factor, as is always done in this form of nested search, then unsafe search

typically produces strategies with low exploitability in two-player zero-sum games (52). This

mitigates the potential for unsafe search to be exploitable, while still retaining the practical

average benefits of unsafe search.

To implement this form of search, Pluribus maintains a probability distribution over pairs

of private cards a player (including Pluribus itself) could be holding from an outside observer’s

perspective based on the actions that have occurred so far in the game. Since there are
(
52
2

)
=

1326 combinations of private cards that a player can have, each probability is initially 1
1326

.

Whenever a round ends, Pluribus makes the public state at the start of the new round the root of

the new subgame. It also updates its belief distribution for each player’s possible private cards

using Bayes’ rule based on strategy profile σ, where σ is the blueprint if real-time search has

not yet been conducted; otherwise σ is the output of the previously-run search.

If search is being done on the first betting round, then the subgame extends to the end of

the round, with leaf nodes at the chance nodes at the start of the second round. If search is

being done on the second betting round and there were more than two players at the start of the

round, then leaf nodes occur either at the chance nodes at the stat of the third betting round or

immediately after the second raise action, whichever is earlier. In all other cases, the subgame

extends to the end of the game.

Pluribus used one of two different forms of CFR to compute a strategy in the subgame

depending on the size of the subgame and the part of the game. If the subgame is relatively

large or it is early in the game, then Monte Carlo Linear CFR is used just as it was for the

blueprint strategy computation. Otherwise, Pluribus uses an optimized vector-based form of

21



Linear CFR (38) that samples one set of public board cards per thread (42). In both cases,

Pluribus actually plays according to the strategy on the final iteration rather than the weighted

average strategy over all iterations. However, σ is updated based on the weighted average

strategy. Playing according to the final iteration helps Pluribus avoid poor actions that are not

completely eliminated in CFR’s weighted average strategy. This could potentially come at

the cost of increased exploitability, but in practice the final iteration’s strategy is sufficiently

unpredictable that any exploitation is infeasible.

Abstraction and off-tree actions in subgames

When conducting search, the current betting round (the round of the root public state) uses loss-

less information abstraction, but subsequent betting rounds use lossy information abstraction in

which each information situation is assigned to one of 500 buckets per round. Each information

situation in a bucket is treated identically. Only a small number of possible raise actions are in-

cluded in the subgame action abstraction, typically no more than five. If an opponent chooses an

action that was not included in the action abstraction, then that action is added as a valid action

into the subgame model and the subgame is searched again from the root (which is typically the

start of the betting round). The root does not change until a new round is reached.

However, there is a risk that the strategy resulting from the second search might be different

than the strategy that Pluribus has played so far with its actual hand. For example, there could

be actions A and B at the root that are distinct actions but nevertheless the game trees following

each are identical, so there is effectively no difference between them. The first time the subgame

is searched, the solution might call for Pluribus to always choose A at the root and therefore

Pluribus would choose A. However, the second time the subgame is searched, the solution

might call for Pluribus to always choose B at the root even though Pluribus had already chosen

A. Since the new solution assumes Pluribus would always choose B at the root and never A,
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the new strategy beyond A might be nonsensical. Not accounting for this problem could cause

Pluribus to choose a poor strategy when search is conducted in later situations.

One way to prevent this would be to freeze the strategy for decision points preceding the

current public state that Pluribus is in. That would effectively always make the current public

state the root of the subgame. However, freezing the strategy for opponent decision points would

make Pluribus less robust to the possibility of an opponent shifting to a different strategy.

Instead, we only freeze the action probabilities for any actions Pluribus chose so far in the

subgame. The action probabilities are only frozen for its actual hand, not for its other possible

hands. Opponent action probabilities are also not frozen. However, when a betting round ends,

the root of the subgame is changed to the start of the new betting round, which effectively

freezes the strategy of all infosets preceding the new root public state.

Leaf node values in imperfect-information subgames

Assuming that all players play according to the blueprint strategy profile following leaf nodes, as

is often done in perfect-information games, can lead to highly exploitable strategies when doing

search in imperfect-information subgames even if the blueprint is an exact Nash equilibrium

because the opponents could shift to different strategies that may exploit the searcher.

To address this in Pluribus, when a leaf node is reached in a subgame during search, each

player still in the hand simultaneously chooses one of four different continuation strategies to

play for the remainder of the game. They may also choose any mixture of (i.e., probability

distribution over) the four strategies. The choice a player makes must be identical for all leaf

nodes that the player cannot distinguish among (i.e., it must be identical for all leaf nodes

that are in the same infoset). This final choice of strategy for the remainder of the game is

essentially just another action in the subgame and is selected via the search algorithm (in the
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case of Pluribus, our improved MCCFR algorithm discussed earlier in this paper).1

In different applications, the set of possible continuations strategies could be chosen in var-

ious different ways, and there could be more or less than four of them per player. In Pluribus,

the four possible continuation strategies are biased modifications of the blueprint strategy. The

first is simply the unaltered blueprint. The second is the blueprint strategy biased toward fold-

ing. Specifically, the probability of folding in all decision points is multiplied by 5 and the

probabilities are then renormalized. The third is the blueprint strategy biased toward calling by

multiplying the call probability by 5 and then renormalizing all the probabilities. The fourth

is the blueprint strategy biased toward raising by multiplying all raise action probabilities by 5

and then renormalizing all the probabilities. To reduce memory usage, the continuation strate-

gies are compressed by sampling an action at each abstract infoset according to the probability

distribution at that abstract infoset. Rather than storing the regrets or probabilities for each ac-

tion, only that action is stored (using the minimum number of bits necessary). This is unlikely

to bias the results because the odds of encountering the same abstract infoset multiple times is

very low.

If an opponent chose an action earlier in the game that was not in the blueprint action

abstraction, then a leaf node in the subgame may not exist in the blueprint abstraction. In that

case we map the leaf node to the nearest node in the blueprint action abstraction using the

deterministic pseudo-harmonic action translation (39).

1We used a similar technique in the two-player NLTH poker AI Modicum (41), but in that case only the
opponent chose among the continuation strategies while the traversing player could only choose the blueprint
strategy. That is sound in theory for two-player zero-sum games, but in practice gives more power to the opponent
and therefore results in the traversing player playing a more conservative, defensive strategy that has lower expected
value. Allowing the traversing player to also choose among continuation strategies helps balance the strength of
the players and helps address this problem. This is also sound in theory for two-player zero-sum games.
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Algorithm 2 Nested search used in Pluribus
1: I ← ∅ . Initialize our current infoset I as the infoset at the start of the game
2: Groot ← G(I) . Initialize the subgame root as the public node of I
3: σ ← σblueprint . Initialize the game’s strategy profile as the blueprint

4: function OPPONENTTURN(a) . Opponent chose action a
5: if !InAbstraction(I, a) then . If action a is not already in the action abstraction for infoset I
6: for each node h ∈ G(I) do
7: AddAction(h, a) . Add a as a legal action for all nodes in the public node of I
8: σ ← Search(Groot) . Compute a new strategy profile for the subgame starting at the root
9: I ← I · a . Advance the current infoset from I to I · a

10: CheckNewRound()

11: function OURTURN . It is our turn to act
12: a ∼ σ(I) . Sample an action from the probability distribution at this infoset
13: frozen(I) = True . σ(I) won’t change if a new strategy is computed for the subgame
14: I ← I · a . Advance the current infoset from I to I · a
15: CheckNewRound()

16: function CHECKNEWROUND . Check if a new round is reached. If so, update the root.
17: if BettingRound(G(I)) > BettingRound(Groot) then
18: Groot = G(I) . Update the root public node
19: σ ← Search(Groot) . Compute a new strategy profile for the subgame starting at the root
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Participant Alias Hands Played Participant Win Rate Standard Error
Participant A 9,121 141.8 mbb/game 85.8 mbb/game
Participant B 7,512 -86.7 mbb/game 87.7 mbb/game
Participant C 6,713 -49.9 mbb/game 121.9 mbb/game
Participant D 6,055 4.9 mbb/game 122.2 mbb/game
Participant E 5,510 101.5 mbb/game 121.8 mbb/game
Participant F 4,483 -59.7 mbb/game 108.6 mbb/game
Participant G 2,560 -126.9 mbb/game 133.5 mbb/game
Participant H 2,509 229.7 mbb/game 177.6 mbb/game
Participant I 1,535 -131.7 mbb/game 229.9 mbb/game
Participant J 1,378 89.3 mbb/game 237.6 mbb/game
Participant K 1,365 141.0 mbb/game 284.1 mbb/game
Participant L 771 -35.6 mbb/game 418.6 mbb/game
Participant M 488 -492.5 mbb/game 515.4 mbb/game

Table S1: The number of hands played, win rate after modest variance reduction, and standard
error after modest variance reduction for each human participant in the 5H+1AI experiment.
Due to the extremely high variance in no-limit poker and the small sample size, no meaningful
conclusions can be drawn about the performance of any individual participant. Only Pluribus’s
performance after the application of AIVAT can be meaningfully evaluated.
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