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Abstract
Imperfect-information games, where players have
private information, pose a unique challenge in ar-
tificial intelligence. In recent years, Heads-Up No-
Limit Texas Hold’em poker, a popular version of
poker, has emerged as the primary benchmark for
evaluating game-solving algorithms for imperfect-
information games. We demonstrate a winning
agent from the 2016 Annual Computer Poker Com-
petition, Baby Tartanian8.

1 Introduction
Imperfect-information games are used to model a variety of
strategic interactions, including negotiations, auctions, se-
curity settings (both physical and digital), and recreational
games such as poker. Algorithms used in perfect-information
games rely on knowing the current state of the game, and then
searching through the remaining reachable states with some
evaluation function. Such algorithms are not applicable to
imperfect-information games, because a player usually does
not know the exact state of the game due to unobserved hid-
den information. Totally different algorithms are required to
address the challenges of imperfect information.

Heads-Up (i.e., two-player) No-Limit Texas Hold’em
poker has emerged as the primary benchmark for evaluating
game-solving algorithms in imperfect-information games.
We demonstrate one such agent. In the most recent Annual
Computer Poker Competition (ACPC), in which there were
11 participants, our agent finished in 1st for the Total Bankroll
Heads-Up No-Limit Texas Hold’em competition (in which
agents are evaluated according to their aggregate performance
against all opponents), and 3rd for the Instant Runoff Heads-
Up No-Limit Texas Hold’em competition (in which the agent
with the lowest bankroll performance against the remaining
agents is eliminated until only one agent remains).

2 Abstraction
The version of No-Limit Texas Hold’em used in the ACPC
contains 10165 nodes in the game tree, which is far too large
for even a single traversal. The standard approach (for a re-
view, see [Sandholm, 2010]) to constructing a strategy for
such large games is to first create an abstraction of the game
which is a manageable size but still preserves as much of the

strategic characteristics of the original game as possible. The
abstraction is then solved using an equilibrium-finding algo-
rithm, and its solution mapped back to the original game.

To facilitate distributed equilibrium finding, our abstrac-
tion algorithm decomposes the game tree into disjoint parts
after the early stage of the game. For Baby Tartanian8, we
defined this “early stage” as the preflop in poker, and sepa-
rated the remaining game tree into disjoint sets by condition-
ing on the flop. During equilibrium finding on a distributed
architecture, the early stage of the game is assigned to one
head node, while each remaining disjoint part is assigned to
a different child node. This ensures that each machine can
access memory locally and run independently, other than one
message to and from the head node on each iteration. This
abstraction approach was used for the top three agents in the
ACPC this year, and was also used for the top agent of the
previous ACPC no-limit competition [Brown et al., 2015].

Our agent uses an asymmetric action abstraction, in which
more actions are allowed for the opponent than for our-
selves [Bard et al., 2014]. This allows us to leverage domain
knowledge to eliminate suboptimal actions for ourselves,
while still being able to respond intelligently in case the op-
ponent chooses suboptimal actions. Actions were selected by
examining the equilibrium strategies of smaller agents and
choosing the actions that were most commonly used.

3 Equilibrium Finding
For equilibrium finding, we used a distributed variant of the
Monte Carlo Counterfactual Regret Minimization algorithm
(MCCFR) based on the algorithm used by the previous ACPC
no-limit winning agent Tartanian7 [Brown et al., 2015]; for
earlier studies on MCCFR algorithms, see [Lanctot et al.,
2009; Zinkevich et al., 2007]. MCCFR is an iterative algo-
rithm which minimizes regret independently in each informa-
tion set. If both players play according to MCCFR, then their
average strategies provably converge to a Nash equilibrium.

Our agent also employs a novel sampling algorithm based
on Regret-Based Pruning (RBP) [Brown and Sandholm,
2015]. RBP allows an agent to avoid exploring actions in the
game tree on every iteration if those actions have performed
poorly in the past, while still guaranteeing convergence to a
Nash equilibrium within the same number of iterations. Thus,
while the number of iterations needed to arrive within a cer-
tain ε of a Nash equilibrium does not change, each iteration



Figure 1: Performance of RBS compared to external-
sampling MCCFR in a smaller-scale preliminary experiment.
External sampling is the most popular form of MCCFR. Both
algorithms were used to train a strategy based on identical ab-
stractions using 64 cores. Performance in milli-big blinds per
hand (mbb / hand) is shown against Tartanian7, the winner of
the 2014 ACPC no-limit hold’em competition.

is performed far more quickly. The number of iterations for
which an action may be skipped depends on how negative the
regret is for that action—the action must be explored again at
the earliest iteration on which its regret could turn positive. In
practice, RBP leads to more than an order of magnitude im-
provement in the speed of convergence for small games, and
this improvement appears to grow with the size of the game.

Our sampled implementation of RBP, which we refer to
as regret-based sampling (RBS), has not been proven to con-
verge to a Nash equilibrium. Nevertheless, preliminary ex-
periments on smaller-scale hardware, as shown in Figure 1,
demonstrated a substantial increase in performance in both
small and large games. Due to this strong empirical perfor-
mance in large-scale experiments, we used RBS in the equi-
librium finding of our competition agent, despite lacking the-
oretical guarantees. Although RBS likely improved our early
convergence rate, there was some evidence that our imple-
mentation of RBS may have led to decreased performance
when closer to convergence. For this reason, we turned off
RBS for the final 5 days of the equilibrium computation.

4 Agent Construction
Our equilibrium finding was run offline at the San Diego Su-
percomputing Center on the Comet supercomputer. We used
3408 cores (142 blades with 24 cores each) for about 600
hours, for a total of about 2 million core hours. Each node
had 128 GB of RAM.

Since we used an asymmetric abstraction, we solved two
separate abstractions (using about 1 million core hours for
each abstraction) and used half of each solution for our final
agent (i.e., the first mover’s strategy or the second mover’s
strategy). Each abstraction had 1.6 · 1014 nodes in its game
tree, and the final strategy required 16 TB to store as doubles.

The submission size limit for the ACPC was 200 GB.
To satisfy this constraint, the final strategy was purified so
that the agent would take a single action with probability

one [Brown et al., 2015]. The purified strategy was then com-
pressed so that each situation would use only dln(|A|)e bits
to represent which action should be played, where |A| is the
number of possible actions in a situation. To reduce the pos-
sibility of an opponent exploiting our deterministic strategy,
we did not purify or compress the early part of the game (the
preflop), which requires only 170 KB to store uncompressed.
The size constraints resulted in our submission of a “Baby”
version of Tartanian8.

5 Demonstration
Attendees at IJCAI will have the opportunity to play against
our agent in two-player No-Limit Texas Hold’em. A web in-
terface will be used to connect to the agent. Two computers
will be available for attendees to use, and the live games will
be shown on large monitors as well. Based on experiments
against human players and the results of the ACPC, we be-
lieve our agent plays at an expert professional human level.
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